首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lactic acid bacteria play an important role in many food and feed fermentations. In recent years major advances have been made in unravelling the genetic and molecular basis of significant industrial traits of lactic acid bacteria. Bacteriophages which can infect and destroy lactic acid bacteria pose a particularly serious threat to dairy fermentations that can result in serious economic losses. Consequently, these organisms and the mechanisms by which they interact with their hosts have received much research attention. This paper reviews some of the key discoveries over the years that have led us to our current understanding of bacteriophages themselves and the means by which their disruptive influence may be minimized.  相似文献   

2.
The author is with the DSM-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-3300 Braunschweig, Germany.  相似文献   

3.
The ultrastructural localization of the plasma-membrane H+ -ATPase by immunocytochemistry was studied in Vicia faba embryos which absorb nutrients from the maternal organism through the transfer cells of their external epidermis. The samples were embedded in LR White resin and the specificity of immunolabelling was checked by inhibition in the presence of purified H+-ATPase. The following results were obtained: (i) The H+-ATPase density varied according to the cell type, being higher in transfer cells than in other cell types, especially the non-modified cells of the internal epidermis. (ii) There was a marked polarity in transfer cells as proton pumps were more numerous in the area of plasmalemma infoldings where active nutrient uptake is assumed to take place, (iii) No clear immunolabelling occurred on the plasma membrane of plasmodesmata. These results demonstrate that in transfer cells the area of plasmalemma infoldings is highly specialized for active solute transport; they also support the idea of specific structural properties of the plasmalemma in plasmodesmata.This work was supported by the Centre National de la Recherche Scientifique (URA CNRS 574). We express our gratitude to Dr M.G. Palmgren (Royal Veterinary and Agricultural University, Copenhagen, Denmark) for his gift of purified H+-ATPase. We wish to thank J.C. Fromont for his skillful technical assistance with the immunological procedures. We are grateful to J.M. Perault and C. Besse of the Electron Microscopy Service (Service Universitaire de Microscopie Electronique Appliquée à la Biologie Poitiers, France) for their contribution to the microscopical techniques.  相似文献   

4.
The antibiotic era started in the 1940s and changed the profile of infectious diseases and human demography. The burgeoning classes and numbers promised much and elimination of this major cause of human (and animal) morbidity appeared possible. Bacterial antibiotic resistance which was observed soon after antibiotic introduction has been studied extensively. Diverse mechanisms have been demonstrated and the genetic basis elucidated. The resilience of the prokaryote ecosystems to antibiotic stress has been realized. The paper presents these subjects briefly to afford an overview. The epidemiology of antibiotic resistance is dealt with and community practices in different countries are described. The role of high antibiotic usage environments is indicated. The implication of the wide use of antibiotics in animals has been pointed out. Steadily increasing antibiotic resistance and decreasing numbers of newer antibiotics appear to point to a post-antibiotic period during which treatment of infections would become increasingly difficult. This article attempts to review the global antimicrobial resistance scene and juxtaposes it to the Indian experience. The prevalence in India of antibiotic resistance among major groups of pathogens is described. The factors that determine the prevalent high antibiotic resistance rates have been highlighted. The future research activity to ensure continued utility of antibiotics in the control of infections has been indicated.  相似文献   

5.
Scopadulcic acid B (SA-B), a novel diterpenoid, is a main ingredient of the Paraguayan traditional medicinal herb "Typychá kuratú (Scoparia dulcis L.). SA-B and its debenzoyl derivative, diacetyl scopadol (DAS), specifically inhibit ATP hydrolysis of gastric H+,K(+)-ATPase. Both compounds inhibit the K(+)-dependent dephosphorylation step of the enzyme without any effect on the phosphorylation step. SA-B is a mixed-type inhibitor with respect to the activating cation, K+. SA-B lowers the affinity of H+,K(+)-ATPase to K+ and decreases the maximal velocity of ATP hydrolysis, whereas DAS is an uncompetitive inhibitor with respect to K+. Furthermore, the effects of SA-B and DAS on conformational states of the ATPase were studied by measuring the changes in the fluorescence intensity of the fluorescein isothiocyanate-labeled enzyme. The fluorescence study shows that SA-B primarily binds to the E2K form in the presence of Mg2+ and stabilizes the form and that DAS stabilizes the E2PK form. Therefore, the chemical modification of SA-B, debenzoylation, induced the changes in the pattern of inhibition of H+,K(+)-ATPase. Furthermore, the inhibition mechanisms of SA-B and DAS were different from those of omeprazole, which is an irreversible inhibitor, and SCH 28080, which is a reversible, competitive inhibitor with respect to K+. DAS also inhibited the K(+)-dependent p-nitrophenyl phosphatase activity, and the inhibition was competitive with respect to K+, indicating that the K(+)-dependent p-nitrophenylphosphatase activity does not represent the partial reaction step of H+,K(+)-ATPase.  相似文献   

6.
An evaluation of field data from historical buildings in Germany showed that chemoorganotrophic bacteria are the most numerous microorganisms in building stones, followed by fungi and nitrifying bacteria. Chemoorganotrophic bacteria and fungi were present in almost every sample. Ammonia and nitrite oxidizers were found in 55 and 62% of the samples, respectively. Within months, natural stone was colonized by chemoorganotrophic microorganisms. The highest cell numbers were usually found near the surface. The colonization of natural stone by nitrifying bacteria took several years. The highest cell numbers were in some cases found underneath the surface. Nitrifying bacteria showed a preference for calcareous material with a medium pore radius between 1 and 10 m. Cell numbers of nitrifying bacteria did not correlate to the nitrate content of the stone material. We demonstrated that the stone inhabiting microflora can cause significant loss of nitrate by denitrification. Our data strongly suggested that microbial colonization of historical buildings was enhanced by anthropogenic air pollution. Samples taken from stone material with a pore radius 1 m had significantly higher cell numbers when they were covered with black crusts. A comparison of samples taken between 1990–1995 from buildings throughout Germany showed that in eastern Germany a significantly stronger colonization with facultatively methylotrophic bacteria and nitrifying bacteria existed. The same was true for natural stone from an urban exposure site when compared to material from a rural exposure site. Data from outdoor exposure and laboratory simulation experiments indicated that the colonization of calcareous stone by nitrifying bacteria was enhanced by chemical weathering.  相似文献   

7.
Protons are the most common coupling ions in bacterial energy conversions. However, while many organisms, such as the alkaliphilic Bacilli, employ H(+)-bioenergetics for electron transport phosphorylation, they use Na+ as the coupling ion for transport and flagellar movement. The Na+ gradient required for these bioenergetic functions is established by the secondary Na+/H+ antiporter. In contrast, Vibrio alginolyticus and methanogenic bacteria have primary pumps for both H+ and Na+. They use the proton gradient for ATP synthesis while other, less energy-consuming membrane reactions are powered by the Na+ gradient. In a third mode, some anaerobic bacteria possess decarboxylases acting as primary Na+ pumps. For instance, in Klebsiella pneumoniae, the Na+ gradient established by oxaloacetate decarboxylase is used for the uptake of the growth substrate citrate, and Propionigenium modestum consumes the energy of the Na+ gradient formed by methylmalonyl-CoA decarboxylase directly for ATP synthesis.  相似文献   

8.
9.
10.
More than 11 different P-type H(+)-ATPases have been identified in Arabidopsis by DNA cloning. The subcellular localization for individual members of this proton pump family has not been previously determined. We show by membrane fractionation and immunocytology that a subfamily of immunologically related P-type H(+)-ATPases, including isoforms AHA2 and AHA3, are primarily localized to the plasma membrane. To verify that AHA2 and AHA3 are both targeted to the plasma membrane, we added epitope tags to their C-terminal ends and expressed them in transgenic plants. Both tagged isoforms localized to the plasma membrane, as indicated by aqueous two-phase partitioning and sucrose density gradients. In contrast, a truncated AHA2 (residues 1-193) did not, indicating that the first two transmembrane domains alone are not sufficient for plasma membrane localization. Two epitope tags were evaluated: c-myc, a short, 11-amino acid sequence, and beta-glucuronidase (GUS), a 68-kD protein. The c-myc tag is recommended for its sensitivity and specific immunodetection. GUS worked well as an epitope tag when transgenes were expressed at relatively high levels (e.g. with AHA2-GUS944); however, evidence suggests that GUS activity may be inhibited when a GUS domain is tethered to an H(+)-ATPase complex. Nevertheless, the apparent ability to localize a GUS protein to the plasma membrane indicates that a P-type H(+)-ATPase can be used as a delivery vehicle to target large, soluble proteins to the plasma membrane.  相似文献   

11.
Gastric H(+),K(+)-ATPase consists of alpha-subunit with 10 transmembrane domains and beta-subunit with a single transmembrane domain. We constructed cDNAs encoding chimeric beta-subunits between the gastric H(+),K(+)-ATPase and Na(+),K(+)-ATPase beta-subunits and co-transfected them with the H(+),K(+)-ATPase alpha-subunit cDNA in HEK-293 cells. A chimeric beta-subunit that consists of the cytoplasmic plus transmembrane domains of Na(+),K(+)-ATPase beta-subunit and the ectodomain of H(+),K(+)-ATPase beta-subunit assembled with the H(+),K(+)-ATPase alpha-subunit and expressed the K(+)-ATPase activity. Therefore, the whole cytoplasmic and transmembrane domains of H(+),K(+)-ATPase beta-subunit were replaced by those of Na(+),K(+)-ATPase beta-subunit without losing the enzyme activity. However, most parts of the ectodomain of H(+),K(+)-ATPase beta-subunit were not replaced by the corresponding domains of Na(+), K(+)-ATPase beta-subunit. Interestingly, the extracellular segment between Cys(152) and Cys(178), which contains the second disulfide bond, was exchangeable between H(+),K(+)-ATPase and Na(+), K(+)-ATPase, preserving the K(+)-ATPase activity intact. Furthermore, the K(+)-ATPase activity was preserved when the N-terminal first 4 amino acids ((67)DPYT(70)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the corresponding amino acids ((63)SDFE(66)) of Na(+),K(+)-ATPase beta-subunit. The ATPase activity was abolished, however, when 4 amino acids ((76)QLKS(79)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the counterpart ((72)RVAP(75)) of Na(+),K(+)-ATPase beta-subunit, indicating that this region is the most N-terminal one that discriminates the H(+),K(+)-ATPase beta-subunit from that of Na(+), K(+)-ATPase.  相似文献   

12.
13.
Fumarate-reducing bacteria were sought from the main ruminal bacteria. Fibrobacter succinogenes, Selenomonas ruminantium subsp. ruminantium, Selenomonas ruminantium subsp. lactilytica, and Veillonella parvula reduced fumarate by using H(2) as an electron donor. Ruminococcus albus, Prevotella ruminicola, and Anaerovibrio lipolytica consumed fumarate, although they did not oxidize H(2). Of these bacteria, V. parvula, two strains of Selenomonas, and F. succinogenes had a high capacity to reduce fumarate. In all the fumarate-reducing bacteria examined, fumarate reductase existed in the membrane fraction. Based on the activity per cell mass and the affinity of fumarate reductase to fumarate, these bacteria were divided into two groups, which corresponded to the capacity to use H(2): A group of bacteria with higher activity and affinity were able to use H(2) as an electron donor for fumarate reduction. The bacteria in this group should gain an advantage over the bacteria in another group in fumarate reduction in the rumen. Cellulose digestion by R. albus was improved by fumarate reduction by S. lactilytica as a result of an increased growth of R. albus, which may have been caused by the fact that S. lactilytica immediately consumed H(2) produced by R. albus. Thus fumarate reduction may play an important role in keeping a low partial pressure of H(2) in the rumen.  相似文献   

14.
A series of Northern blot hybridization experiments using probes derived from the rat gastric H+,K(+)-ATPase cDNA and the human ATP1AL1 gene revealed the presence of a 4.3-kilobase mRNA in colon that seemed likely to encode the distal colon H+,K(+)-ATPase, the enzyme responsible for K+ absorption in mammalian colon. A rat colon library was then screened using a probe from the ATP1AL1 gene, and cDNAs containing the entire coding sequence of a new P-type ATPase were isolated and characterized. The deduced polypeptide is 1036 amino acids in length and has an Mr of 114,842. The protein exhibits 63% amino acid identity to the gastric H+,K(+)-ATPase alpha-subunit and 63% identity to the three Na+,K(+)-ATPase alpha-subunit isoforms, consistent with the possibility that it is a K(+)-transporting ATPase. Northern blot analyses show that the 4.3-kilobase mRNA is expressed at high levels in distal colon; at much lower levels in proximal colon, kidney, and uterus; and at trace levels in heart and forestomach. The high mRNA levels in distal colon and the similarity of the colon pump to both gastric H+,K(+)- and Na+,K(+)-ATPases suggest that it is the distal colon H+,K(+)-ATPase. Furthermore, expression of its mRNA in kidney raises the possibility that the enzyme also corresponds to the H+,K(+)-ATPase that seems to play a role in K+ absorption and H+ secretion in the distal nephron.  相似文献   

15.
Vacuolar H(+)-ATPase was isolated from highly purified bovine kidney brush border, using a previously described immunoaffinity method. The affinity purified enzyme had reconstitutively active ATP-induced acidification that was inhibited by N-ethylmaleimide. The brush border H(+)-ATPase had a single pH optimum of 7.3, and a single Km for ATP of 360 microM. The enzyme showed no lipid activation; it had a substrate preference of ATP greater than ITP greater than UTP greater than GTP much greater than CTP, with an ATP:GTP selectivity of 1.69. The brush border H(+)-ATPase required no monovalent anion or cation for activity and was inhibited by the oxyanions NO3(-1) much greater than SO4(-2); sulfite stimulated activity at low concentrations and inhibited at higher concentrations. The inhibition produced by nitrate could not be attributed to dissociation of subunits from the enzyme. The divalent or trivalent cation preference was Mn+2 much greater than Mg+2 much greater than Co+2 greater than Al+3 greater than Ca+2 much greater than Ba+2,Sr+2; 1 mM Zn+2 inhibited the enzyme completely, but Cu+2 inhibited only 49% of activity at concentrations up to 5 mM. Sodium dodecyl sulfate-polyacrylamide gels of the brush border H(+)-ATPase showed subunits at Mr 70,000, a doublet at 56,000, 45,000, 42,000, 38,000, 33,000, 31,000, 15,000, 14,000, and 12,000. On two-dimensional gels, the pl value for the Mr 70,000 subunit was 6.3, for the Mr 56,000 was 6.4, and for the Mr 31,000 was 7.5-8.5, and microheterogeneity was observed in the Mr 56,000 and 31,000 subunits. A comparison of kidney cortex brush border H(+)-ATPase with kidney cortex microsomal H(+)-ATPase revealed differences in pH optimum, Km for ATP, lipid dependence, substrate preference, divalent ion preference, copper sensitivity, and in microheterogeneity of the Mr 56,000 and 31,000 subunits, providing evidence that different functional and structural classes of vacuolar H(+)-ATPase are segregated to specific membrane compartments.  相似文献   

16.
Glutaraldehyde treatment of the C12E8 solubilized H+/K(+)-ATPase crosslinks the catalytic subunit with an apparent molecular mass of 94 kDa in SDS polyacrylamide gels into two Coomassie stained particles migrating at approx. 147 and 173 kDa. The subunit composition of these particles was determined from the comparative distribution of FITC fluorescence, wheat germ agglutinin and anti-beta antibody reactivity in control and crosslinked preparations. FITC exclusively labelled the catalytic monomer of the native preparation and its fluorescence was initially distributed into two broad bands centered at approx. 147 and 173 kDa after crosslinking. These fluorescent bands coincided with the Coomassie stained particles. A glycoprotein(s) detected by wheat germ agglutinin reactivity was present in diffuse areas between 65 and 86 kDa and 95 to 134 kDa in the control preparation. This area was also labelled by the anti-beta antibodies. With crosslinking, the distribution of the wheat germ agglutinin reactive protein and anti-beta antibodies coincided with the crosslinked particles labelled by FITC. The presence of both the catalytic monomer and the beta subunit glycoprotein in the crosslinked particles indicated that these proteins were closely associated in the C12E8 solution. This suggests that the minimal structural particle of the H+/K(+)-ATPase is an alpha,beta-heterodimer.  相似文献   

17.
18.
Arabidopsis thaliana vacuolar H(+)-translocating pyrophosphatase (V-PPase) was expressed functionally in yeast vacuoles with endogenous vacuolar H(+)-ATPase (V-ATPase), and the regulation and reversibility of V-ATPase were studied using these vacuoles. Analysis of electrochemical proton gradient (DeltamuH) formation with ATP and pyrophosphate indicated that the proton transport by V-ATPase or V-PPase is not regulated strictly by the proton chemical gradient (DeltapH). On the other hand, vacuolar membranes may have a regulatory mechanism for maintaining a constant membrane potential (DeltaPsi). Chimeric vacuolar membranes showed ATP synthesis coupled with DeltamuH established by V-PPase. The ATP synthesis was sensitive to bafilomycin A(1) and exhibited two apparent K(m) values for ADP. These results indicate that V-ATPase is a reversible enzyme. The ATP synthesis was not observed in the presence of nigericin, which dissipates DeltapH but not DeltaPsi, suggesting that DeltapH is essential for ATP synthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号