首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The resistance of HIV-1 to 3'-azido-3'-deoxythymidine (AZT) involves phosphorolytic excision of chain-terminating AZT-5'-monophosphate (AZTMP). Both pyrophosphate (PPi) and ATP act as excision substrates in vitro, but the intracellular substrate used during replication of AZT-resistant HIV is still unknown. PPi-mediated excision produces AZT-5'-triphosphate (AZTTP), which could be immediately re-used as a substrate for viral DNA chain termination. In contrast, ATP-mediated excision produces the novel compound AZT-(5')-tetraphospho-(5')-adenosine (AZTp4A). Since little is known of the interaction of AZTp4A with HIV-1 RT, we carried out kinetic and molecular modeling studies to probe this. AZTp4A was found to be a potent inhibitor of HIV-1 RT-catalyzed DNA synthesis and of both ATP- and PPi-mediated AZTMP excision. AZTp4A is in fact an excellent chain-terminating substrate for AZT-resistant RT-catalyzed DNA synthesis, better than AZTTP (k(pol)/Kd = 6.2 and 11.9 for AZTTP and AZTp4A, respectively). The affinity of AZT-resistant HIV-1 RT for AZTp4A is at least 30,000-fold greater than that for the excision substrate ATP and approximately 10-fold greater than that for AZTTP. Dissociation of newly formed AZTp4A from RT may therefore provide a significant rate-limiting step for continued HIV-1 DNA synthesis. Our studies show that the products of PPi- and ATP-mediated excision of chain-terminating AZTMP (AZTTP and AZTp4A, respectively) are both potent chain-terminating substrates for HIV-1 RT, suggesting that there is no obvious benefit to HIV using ATP instead of PPi as the excision substrate.  相似文献   

4.
We have replaced the pyridyl ring of trovirdine with an alicyclic cyclohexenyl, adamantyl or cis-myrtanyl ring. Only the cyclohexenyl-containing thiourea compound N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-bromopyridyl)]- thiourea (HI-346) (as well as its chlorine-substituted derivative N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-chloropyridyl)]- thiourea/HI-445) showed RT inhibitory activity. HI-346 and HI-445 effectively inhibited recombinant RT with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cell-free RT inhibition assays was: HI-346 (IC50 = 0.4 microM) > HI-445 (IC50 = 0.5 microM) > trovirdine (IC50 = 0.8 microM) > MKC-442 (IC5 = 0.8 microM) = delavirdine (IC50 = 1.5 microM) > nevirapine (IC50 = 23 microM). In accord with this data, both compounds inhibited the replication of the drug-sensitive HIV-1 strain HTLV(IIIB) with better IC50 values than other anti-HIV agents tested. The ranking order of efficacy in cellular HIV-1 inhibition assays was: HI-445 = HI-346 (IC50 = 3 nM) > MKC-442 (IC50 = 4 nM) = AZT (IC50 = 4 nM) > trovirdine (IC50 = 7 nM) > delavirdine (IC50 = 9 nM) > nevirapine (IC50 = 34 nM). Surprisingly, the lead compounds HI-346 and HI-445 were 3-times more effective against the multidrug resistant HIV-1 strain RT-MDR with a V106A mutation (as well as additional mutations involving the RT residues 74V,41L, and 215Y) than they were against HTLV(IIIB) with wild-type RT. HI-346 and HI-445 were 20-times more potent than trovirdine, 200-times more potent than AZT, 300-times more potent than MKC-442, 400-times more potent than delavirdine, and 5000-times more potent than nevirapine against the multidrug resistant HIV-1 strain RT-MDR. HI-445 was also tested against the RT Y181C mutant A17 strain of HIV-1 and found to be >7-fold more effective than trovirdine and >1,400-fold more effective than nevirapine or delavirdine. Similarly, both HI-346 and HI-445 were more effective than trovirdine, nevirapine, and delavirdine against the problematic NNI-resistant HIV-1 strain A17-variant with both Y181C and K103N mutations in RT, although their activity was markedly reduced against this strain. Neither compound exhibited significant cytotoxicity at effective concentrations (CC50 >100 microM). These findings establish the lead compounds HI-346 and HI-445 as potent inhibitors of drug-sensitive as well as multidrug-resistant stains of HIV-1.  相似文献   

5.
6.
The 60-fold reduced phosphorylation rate of azidothymidine (AZT) monophosphate (AZTMP), the partially activated AZT metabolite, by human thymidylate kinase (TMPK) severely limits the efficacy of this anti-HIV prodrug. Crystal structures of different TMPK nucleotide complexes indicate that steric hindrance by the azido group of AZTMP prevents formation of the catalytically active closed conformation of the P-loop of TMPK. The F105Y mutant and a chimeric mutant that contains sequences of the human and Escherichia coli enzyme phosphorylate AZTMP 20-fold faster than the wild-type enzyme. The structural basis of the increased activity is assigned to stabilization of the closed P-loop conformation.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Three nucleoside analogues, 3'-fluoro-2',3'-dideoxythymidine (FLT), 3'-azido-2',3'-dideoxythymidine (AZT), and 2',3'-dideoxy-3'-thiacytidine (3TC) were conjugated with three different dicarboxylic acids to afford the long chain dicarboxylate esters of nucleosides. In general, dinucleoside ester conjugates of FLT and 3TC with long chain dicarboxylic acids exhibited higher anti-HIV activity than their parent nucleosides. Dodecanoate and tetradecanoate dinucleoside ester derivatives of FLT were found to be the most potent compounds with EC(50) values of 0.8-1.0nM and 3-4nM against HIV-1(US/92/727) and HIV-1(IIIB) cells, respectively. The anti-HIV activity of the 3TC conjugates containing long chain dicarboxylate diester (EC(50)=3-60nM) was improved by 1.5-66 fold when compared to 3TC (EC(50)=90-200nM). This study reveals that the symmetrical ester conjugation of dicarboxylic acids with a number of nucleosides results in conjugates with improved anti-HIV profile.  相似文献   

16.
Increased therapeutic efficacy of zidovudine in combination with vitamin E   总被引:2,自引:0,他引:2  
Antiviral activity and bone marrow toxicity of 3'-azido-3'deoxythymidine (Zidovudine; AZT) was evaluated in the presence of alpha-D-tocopherol acid succinate (ATS) in the MT4 cell line and in murine hematopoietic progenitor cells, respectively. At varying concentrations (.016 to .125 microM) of AZT, addition of ATS (5 to 15 micrograms/ml) showed a dose-dependent increase in anti-HIV activity. The ED90 of AZT in this test system was 0.37 microM, whereas in the presence of ATS (15 micrograms/ml) it was 0.06 microM, thus producing an approximately 6-fold increase in anti-HIV activity. In contrast, in murine bone marrow cells, ATS (4 micrograms/ml) showed significant protection (p less than 0.05) against AZT-induced toxicity as measured by CFU-E and CFU-GM assays. The IC50 values in the presence and absence of ATS for CFU-E were 3.7 and 1.5 microM, whereas for CFU-GM were 6.0 and 2.7 microM, respectively. Overall, these data suggest that AZT in combination with ATS has greater therapeutic efficacy against HIV-1.  相似文献   

17.
18.
19.
20.
A series of hydrophobic, water soluble and non-toxic amino acid phosphoramidate monoesters of dideoxyadenosine (ddA) and 3'-azido-3'-deoxythymidine were shown to inhibit the replication of HIV-1 in human peripheral blood mononuclear cells (PBMC) from two donors. The tryptophan methyl ester phosphoramidates of AZT and ddA were equally potent (EC50S = 0.3-0.4 microM), while the phenyl methyl ester of ddA was 40- to 100- fold more potent than the AZT derivatives. The alaninyl methyl ester of AZT was found to be 70- fold more potent than the ddA derivative. The methyl amide derivatives were found to be 5-20 fold less active than the methyl esters for the ddA series, while for AZT the derivatives were found to be of similar potency or 60- to 166- fold more potent than the methylesters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号