首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The zooplankton structure in the littoral of two small lakes that were subjected to the effect of products of the vital activity of birds is described. In the area of birds?? nesting in the zooplankton of the larger lake, the abundance and biomass of copepods reliably increased and the abundance of rotifers decreased, whereas in the smaller lake, a tendency toward the dominant development of rotifers and cladocerans was found. It is suggested that the differences in the zooplankton structure in the littoral of both lakes are determined by the area and the number of nesting birds.  相似文献   

2.
The vertical distribution of zooplankton rotifers in the open waters of Laguna El Tigre was investigated. Rotifers showed a relatively uniform distribution throughout the water column. This pattern of distribution was maintained during the year and did not show variations in relation to hydrologic phases of inundation and isolation of the lake. Diel vertical migration of rotifers from the limnetic and the littoral area was investigated too. In littoral area rotifers exhibited a reverse migration, whereas in the limnetic the movements were less conspicuous. Horizontal migration was observed too, and there were interactions between horizontal and vertical distribution. Predation and competition offer a possible explanation.  相似文献   

3.
The aim of this study was to examine the combined effect of water transparency and narrow macrophyte belts on zooplankton assemblages in two oxbow lakes (Krapina River, Croatia). Samples were collected in open water and among helophytes in the littoral zone from April until September 2008. Rotifers were the most abundant group of zooplankton in both lakes, and dominated in the Krapina oxbow lake 1 (KO1). Lake KO1 had significantly lower transparency, lower percentage macrophyte cover and higher chlorophyll a concentration than Krapina oxbow lake 2 (KO2). In lake KO1, variation in the horizontal distribution of cladocerans and rotifers in terms of their abundance seemed to be determined by competition between Bosmina longirostris and Keratella cochlearis, initiated by oscillation in transparency and detritus availability. In lake KO2, with higher transparency and higher percentage macrophyte cover, the abundance of small‐ and large‐bodied cladocerans increased in the littoral zone simultaneously with higher transparency, suggesting fish predation. Results of this study indicated that small differences in transparencies between the two lakes caused significant differences in horizontal distribution of the zooplankton assemblage. Even narrow helophyte belts offered a refuge to zooplankton, although lower transparencies reduced the effectiveness of macrophytes as a refuge from predators. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Specific features of the Lake Sevan zooplankton development during a rise in water level in July 2007 and a change in the fish density were revealed. Compared to earlier data (from the second half of the 20th century), the pelagial zooplankton quantitatively dominates over the zooplankton of shallows. It is shown that the diversity and abundance of rotifers increase in the coastal zones subject to inundation. The rotifer indicator species of eutrophic and α-mesosaprobic waters contribute to this increase. The stimulating effect of the waste products of a bird colony on the zooplankton of the lake shallows is revealed.  相似文献   

5.
1. The zooplankton often undergoes diel horizontal migration (DHM) from the open water to the littoral of shallow lakes, thus avoiding predators in the former. This behaviour has functional impacts within the lake, as it enhances zooplankton survival, increases their control of phytoplankton and tends to stabilise the clear water state. However, most of the evidence supporting this migration pattern comes from cold north temperate lakes, and more evidence from tropical and subtropical areas, as well as from southern temperate areas, is needed. 2. We conducted a field study of the diel horizontal and vertical migration of zooplankton, and the horizontal distribution of potential predatory macroinvertebrates and fish, over two consecutive days in the summer in a temperate lake in the southern hemisphere. We took zooplankton samples at two depths, at three sampling stations (inside beds of aquatic macrophytes, at their edge and in open water) along three transects running from the centre of a bed of Ceratophyllum demersum to open water. At each sampling station, we also took samples of macroinvertebrates and fish and measured physical and chemical environmental variables. 3. Zooplankton (pelagic cladocerans, calanoid copepods and rotifers) avoided the shore, probably because of the greater risk from predators there. Larger and more vulnerable cladocerans, such as Diaphanosoma brachyurum and Moina micrura, were two to four times more abundant in open water than at the edge of or inside beds of macrophytes, respectively, by both day and night. Less vulnerable zooplankton [i.e. of medium body size (Ceriodaphnia dubia) or with the ability to swim fast (calanoid copepods)] were distributed evenly between open water and the edge of the plant beds. Small zooplankton, Bosmina huaronensis and pelagic rotifers, showed an even distribution among the three sampling stations. Accordingly, no DHM of zooplankton occurred, although larger organisms migrated vertically inside C. demersum stands. 4. Macrophytes contained high densities of predatory macroinvertebrates and fish. The predator assemblage, composed of large‐bodied macroinvertebrates (including odonates and shrimps) and small littoral fish, was permanently associated with submerged macrophytes. None of these groups moved outside the plant beds or changed their population structure (fish) over the diel cycle. 5. Submerged macrophyte beds do not represent a refuge for zooplankton in lakes where predators are numerous among the plants, implying a weaker top‐down control of phytoplankton biomass by zooplankton and, consequently, a more turbid lake. The effectiveness of macrophytes as a refuge for zooplankton depends on the associated assemblage of predatory macroinvertebrates and fish among the plants.  相似文献   

6.
This study investigated the relationship between spatial variations in predation risk and abundance of northern redbelly dace Phoxinus eos at both macroscale (littoral v. pelagic zones) and microscale (structured v. open water habitats in the littoral zone) of Canadian Shield lakes. Minnow traps were placed in both structured and open water habitats in the littoral zone of 13 Canadian Shield lakes, and estimates of the relative predation risk of P. eos in both the pelagic and the littoral zones were obtained from tethering experiments. Results showed that (1) the mean abundance of P. eos in the littoral zone was positively correlated with the relative predation risk in the pelagic zone, (2) P. eos preferentially used structured over open water habitats in the littoral zone and (3) this preference was not related to the relative predation risk in the littoral zone but decreased as the relative predation risk increased in the pelagic zone. At the lake level, these results support the hypothesis that P. eos enter the littoral zone to avoid pelagic piscivores. At the littoral zone level, the results do not necessarily contradict the widely accepted view that P. eos preferentially use structured over open habitats to reduce their predation risk, but suggest that flexibility in antipredator tactics ( e.g. shelter use v. shoaling) could explain the spatial distribution of P. eos between structured and open water habitats.  相似文献   

7.
The species diversity, abundance, and biomass of zooplankton in the pelagic and coastal zones of Lake Kandrykul were studied in 2007–2012. The community was dominated by large Cladocera. The maximum abundance of zooplankton was observed in the anomalously warm 2010. In July, the highest abundance of zooplankton (1300 thousand ind./m3) was recorded near the southern coast in stands of mare′s-tail Hippurus vulgaris; that of biomass (9 g/m3) was found near the northern shore in stands of narrow-leaved cattail Typha angustifolia. The lowest values of the number and biomass of aquatic invertebrates were observed in the pelagial (32 thousand ind./m3 and 0.1 g/m3) and along the M5 motorway stretching aside the northeastern coast (188 thousand ind./m3 and 0.5 g/m3). The Shannon index value (1.3–2.1) corresponded to the meso-eutrophic type of water bodies. In 2007, according to the Mjaemets trophicity index (E), the lake ecosystem was oligotrophic (E 0.11); in 2010–2012 it was mesotrophic (in the pelagial, E value was 0.54; in the open littoral it was 0.76) or weakly eutrophic (E values of protected littoral were 1.52). The estimates of water trophy as assessed by zooplankton are close to those assessed by the number and biomass of phytoplankton (meso-eutrophic type). The rapid eutrophication of the lake ecosystem was revealed. In 6 years the trophic status of the lake changed from oligo-mesotrophic to meso-eutrophic.  相似文献   

8.
1. The distribution of zooplankton in shallow lakes is negatively related to macrophyte density. However, the abundance of their food along density gradients of macrophytes is unknown. A common but untested assumption is that food quantity and quality for pelagic zooplankton is poor in the littoral zone owing to the deleterious influence of macrophytes on phytoplankton. 2. We tested this assumption with a combination of a field survey and laboratory experiments. We collected seston samples from the littoral and pelagic zones of four shallow temperate lakes and related food quantity (phytoplankton biovolume) and quality to macrophyte abundance (per cent volume infested). Seston food quality was assessed in three ways: N/C and P/C ratios, polyunsaturated fatty acid content and phytoplankton community composition. In the laboratory, we measured the growth and reproduction of Daphnia pulicaria on diets consisting of seston from the littoral and pelagic zones in one lake. 3. In our four study lakes, food quantity was not significantly influenced by macrophyte abundance, and food quality was generally high. Laboratory experiments showed increased juvenile growth, but no significant change in D. pulicaria reproduction, when feeding on littoral resources compared to pelagic resources. 4. Our results suggest that there is no nutritional cost to pelagic zooplankton inhabiting the littoral zone. Therefore, it is likely that other factors (e.g. predation, abiotic factors) are involved in determining zooplankton habitat use.  相似文献   

9.
SUMMARY 1. We studied the effect of the small crustacean zooplankton on heterotrophic micro-organisms and edible phytoplankton in a eutrophic lake during a cyanobacterial bloom.
2. Small (15 L) enclosures were filled with natural or screened (100 μm) lake water and incubated for 5 days in the lake. Screening removed crustacean zooplankton but the initial density of rotifers and phytoplankton remained the same in control and removal treatments. Changes in the abundance and biomass of bacteria, autotrophic picoplankton (APP), heterotrophic nanoflagellates (HNF) and ciliates were measured daily.
3. The crustacean zooplankton, dominated by the small cladoceran Chydorus sphaericus , did not affect cyanobacteria, the main phytoplankton group during the experiment.
4. The removal of the crustacean zooplankton induced a higher abundance of ciliates and reduced that of the HNF, indicating the importance of ciliates in controlling HNF in this system.  相似文献   

10.
Marta Illyová 《Biologia》2006,61(5):531-539
The species composition, seasonal dynamic of biomass and density of zooplankton were studied in two arms with a different hydrological regime. The samples were collected in two hydrologically different years — extremely wet in 2002 and extremely dry in 2003. In the first arm the mean annual chlorophyll-a concentration was 31.6 μg L−1 (2002) and relatively high 64.7 μg L−1 during 2003. Mean seasonal zooplankton wet biomass was low and varied: 11.6 g m−3 (2002) and 2.93 g m−3 (2003). Total zooplankton density was high (7,370 N L−1) in 2002, when rotifers predominated in an open water zone and contributed up to 81% of the total zooplankton biomass and 83% of the total zooplankton density. In medial and littoral zone, in total, 22 cladoceran and 15 copepod species were identified. In the second arm the mean annual concentration of chlorophyll-a was high: 74.8 μg L−1 (2002) and 61.4 μg L−1 (2003). Mean seasonal zooplankton wet biomass varied from 92.5 g m−3 (2002) and 44.10 g m−3 (2003). In 2002 the planktonic crustaceans predominated; their mean biomass was 87.1 g m−3 and B. longirostris formed more than 91% of this value. In 2003, the zooplankton density was high (15,687 N L−1), when rotifers contributed up to 94% of this value. The boom of rotifers (58,740 N L−1) was recorded in June 2003. In total, 45 cladoceran and 14 copepod species were recorded in the medial and littoral zones. During observation we concluded that the structure of zooplankton, particularly species composition, abundance, biomass and seasonal dynamics are affected by the fluctuation of water levels in the arms of the rivers’ inundation areas. This unstable hydrological regime prevented the development of planktonic crustaceans.  相似文献   

11.
The effects of cyanobacteria on zooplankton abundance, structure and diversity were investigated, based on a systematic study on spatial and temporal variations of cyanobacteria and zooplankton in Lake Taihu from 1998 to 2007. It was found that similar increasing trends of cyanobacteria/phytoplankton ratios were accompanied by different trends in biomass, composition and biodiversity of zooplankton in different regions of the lake; the cladocerans benefitted from the increase in cyanobacteria; however, rotifers and protozoans were negatively affected by cyanobacteria. The biomass-based biodiversity of phytoplankton and zooplankton was negatively affected by cyanobacteria as well, and the adverse effects were in proportion to the cyanobacteria/phytoplankton ratio. These results indicated interestingly that higher amounts of cyanobacteria do not necessarily reduce zooplankton biomass, as the biomass of larger zooplankton such as cladocerans was positively related to cyanobacteria. The findings are essential to understand the complex ecological effects of cyanobacteria blooms in lakes.  相似文献   

12.
Movement of plankton through lake-stream systems   总被引:2,自引:0,他引:2  
1. River plankton are often assumed to come from upstream lakes, but the factors controlling the movement of plankton between lakes and rivers into outflow streams are unclear. We tested the possibility that the physical structure of the littoral zone near the lake outlet (depth, presence of macrophytes) and diurnal differences in plankton composition at the lake surface influence the movement of plankton from the lake into the stream and determine their persistence downstream. 2. Zooplankton and phytoplankton biomass, community composition and mean body size were compared between two deep lakes without macrophytes at the lake edge and two shallow lakes with macrophytes at the lake edge. Samples were collected day and night on three dates, in the lake centre, in the littoral zone adjacent to the lake outlet, at the outlet and at two sites downstream in Algonquin Park, Ontario, Canada. 3. The morphology of lake edges clearly affects the movement of lake zooplankton into outlet streams. Outlets draining deeper littoral zones had higher zooplankton biomass than shallow littoral outlets (P < 0.0001), but these differences disappeared within 50 m downstream of the lake. There was no difference in mean zooplankton body size among lake outlets or between littoral and outlet samples. However, shallow littoral zones were dominated by cyclopoid copepods and deeper littoral zones were dominated by Bosmina longirostris. In contrast, phytoplankton biomass entering the outlet was similar to that found within the lake and did not vary with lake outlet morphology. These effects were consistent across several sampling weeks and were not affected by surface zooplankton biomass changes associated with diurnal vertical migration in the lake centre. 4. A comparison with published river zooplankton data suggests that zooplankton are rapidly eliminated from shallow outlet streams (≤1 m deep) but persist in most deeper outlet rivers (≥2 m deep). Because the depth of an outlet river determines downstream zooplankton community development, the contribution of lakes to river plankton communities may be influenced by the location of each lake within the drainage basin. These findings suggest that lake and outflow physical structure influences connection strength between spatially successive habitats.  相似文献   

13.
Species composition, abundance, and spatial distribution of rotifer and crustacean zooplankton were studied in Lake Ziway from late April to early July 2004. A total of 49 rotifer species was recorded, with Anuraeopsis fissa, Brachionus angularis, Filinia novaezealandiae, and Trichocerca ruttneri being numerically dominant. Variation in abundance was extremely high, ranging from 2 to 1000+ individuals per litre. There was no significant difference in the distribution of rotifer species between inshore and offshore regions. Crustacean species richness was low, with only five cladoceran and three copepod species occurring in the open water. Moina micrura and Diaphanosoma excisum dominated the cladoceran community, whereas Thermocyclops decipiens was the dominant copepod. Although numerically dominant (75%), rotifers accounted for less than 30% of mean total zooplankton biomass. Peak abundance of crustaceans was observed in May and June, following the onset of the rainy season and increased phytoplankton production. Variation in the spatial distribution of crustacean species was neither observed horizontally between inshore and offshore areas nor vertically in the highly turbid and wind exposed deeper part of the lake. On the other hand, Moina micrura varied significantly in size between inshore and offshore areas. Adult M. micrura dominated offshore, whereas juveniles were more abundant inshore, suggesting a predominantly littoral selective predation on large and adult crustaceans by fish. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The trophic role of rotifers in the zooplankton community of dimictic, oligotrophic lake Kozjak, the largest lake of the Plitvice Lakes, NW Dinarid Mountains, is analyzed. Their spatial and temporal biomass distribution in relation to that of protozoans, cladocerans and copepods shows that they form a significant part of the non-predatory zooplankton of this karstic standing water.  相似文献   

15.
16.
Coelho  Paula Nunes  Henry  Raoul 《Limnology》2022,23(3):429-440
Limnology - We investigated the taxonomic and functional diversity of rotifers in the littoral, intermediate, and pelagic zones of a tropical lake. Rotifers were collected at 10 sampling stations...  相似文献   

17.
为探明水源地河流浮游动物多样性及与水环境因子的关系, 利用浮游动物多样性参数监测水质, 2010-2014年间, 我们于每年的冬季(1月)、春季(4月)、夏季(7月)和秋季(10月), 对浙江2个水源地河流采样站(H1站和H2站)展开浮游动物种类组成、丰度和多样性指数的季节性调查, 同时测定水环境因子。结果表明, H1站和H2站浮游动物平均丰度分别为1,387.4 ind./L和873.0 ind./L, 小型浮游动物(轮虫 + 桡足类无节幼体)丰度分别占92.8% (H1站)和91.5% (H2站)。两采样站轮虫、枝角类和桡足类的优势种均为针簇多肢轮虫(Polyarthra trigla)、短尾秀体溞(Diaphanosoma brachyurum)和温剑水蚤(Thermocyclops sp.)。多元逐步回归与通径分析结果表明: 冬季氮磷比是轮虫类Shannon-Wiener多样性指数(H′)波动的限制因子, 主要通过总磷含量对轮虫类H′指数产生较大的间接正向作用; 春季氮磷比是轮虫类H′指数发展的决策因子; 秋季氮磷比可通过总氮含量对轮虫类H′指数产生较大的间接正向作用。冬季氨氮、总氮含量分别是甲壳动物体积多样性指数(Hs)的决策因子和限制因子。夏季溶解氧含量是总浮游动物物种丰富度(d)波动的限制因子, 主要通过pH值对d指数产生较大的间接正向作用, 作用机制表现为轮虫类H′指数随着夏季溶解氧含量的升高呈极显著上升(P < 0.01), 而甲壳动物Hs指数则显著下降(P < 0.05)。水源地河流环境因子与浮游动物多样性之间的相互关系为浙江水源地生态学监测提供了可能性。  相似文献   

18.
The diversity and longitudinal variation of zooplankton in the lower Vistula River were analyzed. Samples were taken from 40 stations located along a 272-km long section of the lower river course. During the study the unique technique of taking samples from “the same water” was used. The zooplankton community was dominated by rotifers and nauplii — larval stages of copepods. The most abundant species were: Brachionus angularis, Brachionus calyciflorus and Brachionus budapestiensis. The zooplankton species diversity in the main channel of the lower Vistula River was similar to other large European rivers; however, its abundance was lower. The diversity, abundance and biomass of potamoplankton steadily decreased downstream. This could be related both to scarcity of storage zones for potamoplankton development in the river due to the extensive regulation processes, and changes in hydrological conditions of the main channel (by the straightening of riverbed) where the samples were collected.  相似文献   

19.
El-Shabrawy  Gamal M.  Dumont  Henri J. 《Hydrobiologia》2003,491(1-3):119-132
A prominent feature of Lake Nasser is the presence of khors (dendritic side extensions). We studied the zooplankton of the larger khors and coastal zone of the main lake in 1996 and 1997, and found an assemblage of rotifers, cladocerans and copepods that was partly tropical, partly temperate, at relatively high biomasses. Spatial differences were weak, but the upstream khors (Toushka and Korosko) were consistently richer than the downstream khors (El-Ramla and Kalabsha), with a rather sudden transition around km 150 at El Madiq. Summer standing crops were higher than those in winter by a factor 2–3. The zooplankton of the littoral of the main channel showed the same spatial pattern as that in the khors, being more abundant in spring (average 82300 ind m–3) than in autumn (average 72700 ind m–3). Zooplankton dry weight increased from 4 g m–2 at khor El-Ramla to 7 g m–2 at khor Toushka. These rather high values had low variation. The number of species, diversity and evenness all showed a high degree of similarity among the khors and in the littoral of the main lake. The lake fish fauna is poor, lacking a pelagic planktivore. The predominance of medium-sized Copepoda (one calanoid, two cyclopoids) in the zooplankton suggests that fish predation is moderate. This is confirmed by the persistence of two Daphnia species at low abundance, although rather strong variations in time suggest that Cladocera suffer from summer predation by invertebrates (copepods) as well as vertebrates (mostly larval fish). Because the zooplankton is underutilised by higher trophic levels, we suggest to assess the benefits of introducing a pelagic zooplanktivorous fish.  相似文献   

20.
1. Zooplankton use macrophytes as day-time refuge areas when trying to escape from pelagic predators. But macrophytes can also host a diverse and abundant macroinvertebrate assemblage and zooplankton are also likely to face predacious macroinvertebrates once they enter the littoral zone. This study aimed to elucidate the role of macroinvertebrates in determining the refuge capacity of macrophytes.
2. We conducted a field enclosure experiment using plastic bags and complementary laboratory feeding trials to test how macroinvertebrates counteract the benefits to zooplankton of the macrophyte refuge. The field experiment consisted of three treatments with different macroinvertebrate assemblages: without predators (WP), low abundance and diversity (LAD) and high abundance and diversity of predators (HAD – which represents lake conditions).
3. Populations of Diaphanosoma brachyurum , Bosmina huaronensis and Moina micrura (Cladocera) and of both male and female Notodiaptomus incompositus (Copepoda, Calanoida) declined (by nearly 80%) in the presence of HAD in comparison to WP and LAD treatments.
4. Feeding trials revealed that Buenoa sp. (backswimmer), adults of Palaemonetes argentinus (grass shrimp) and Cyanallagma interruptum (damselfly) had a significant negative impact on cladocerans ( D. brachyurum, B. huaronensis ) and the calanoid copepod population (males, females and copepodites). These predators showed a strong predation effect ranging from 75% to 100% reductions of zooplankton populations.
5. The refuge effect offered by macrophytes to zooplankton depends on and is balanced by the predacious macroinvertebrate assemblage that plants host. The risk of confronting littoral predators is high and macroinvertebrate presence can turn the macrophytes into risky areas for zooplankton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号