首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
The embryonic origins of taste receptor cells have not beenestablished experimentally. Although related receptor cells(e.g. hair cells of the inner ear, lateral line receptors) areknown to arise from neurogenic ectoderm (e.g. neural crest orplacodes), taste buds are described as arising from local epithelialcells. Also unknown is whether or not each taste bud is a cloneof cells, i.e. arising from a single progenitor. To addressthese problems, mosaic and chimeric analyses of lingual epitheliumand taste buds have been undertaken. This paper describes thetheory of chimeric and mosaic cell lineage analyses, the advantagesand disadvantages, and the preliminary results obtained fromthe examination of the taste buds and lingual epithelium of:1) mosaic Xenopus, 2) chimeric mice and 3) X-inactivation mosaicmice.  相似文献   

2.
The epithelium of mammalian tongue hosts most of the taste buds that transduce gustatory stimuli into neural signals. In the field of taste biology, taste bud cells have been described as arising from "local epithelium", in distinction from many other receptor organs that are derived from neurogenic ectoderm including neural crest (NC). In fact, contribution of NC to both epithelium and mesenchyme in the developing tongue is not fully understood. In the present study we used two independent, well-characterized mouse lines, Wnt1-Cre and P0-Cre that express Cre recombinase in a NC-specific manner, in combination with two Cre reporter mouse lines, R26R and ZEG, and demonstrate a contribution of NC-derived cells to both tongue mesenchyme and epithelium including taste papillae and taste buds. In tongue mesenchyme, distribution of NC-derived cells is in close association with taste papillae. In tongue epithelium, labeled cells are observed in an initial scattered distribution and progress to a clustered pattern between papillae, and within papillae and early taste buds. This provides evidence for a contribution of NC to lingual epithelium. Together with previous reports for the origin of taste bud cells from local epithelium in postnatal mouse, we propose that NC cells migrate into and reside in the epithelium of the tongue primordium at an early embryonic stage, acquire epithelial cell phenotypes, and undergo cell proliferation and differentiation that is involved in the development of taste papillae and taste buds. Our findings lead to a new concept about derivation of taste bud cells that include a NC origin.  相似文献   

3.
4.
The tissue environment within which taste bud cells develop has not been wholly elaborated. Previous studies of taste bud development in vertebrates, including the avian chick, have suggested that taste bud cells could arise from one, or several tissue sources (e.g. crest-mesenchyme, local ectoderm or endoderm). Thus, molecular markers which are present in gemmal as well as interfacing (peribud epithelium; mesenchyme-epithelium) regions, and their degree of expression during stages of taste bud development, are of special interest. The intermediate filament protein, vimentin, occurs in mesenchymal and mesodermally-derived (e.g. endothelial, fibroblast) cells as well as highly proliferating epithelium (e.g. tumors). The present study in chick gustatory tissue utilized antibodies against vimentin and the avidin-biotin-peroxidase technique to evaluate vimentin immunoreactivity (IR) within a timeframe which includes: 1) early stages of the taste bud primordium [embryonic days (E)17-E18)]; 2) the beginning of an accelerated bud cell proliferation at the time of initial, taste bud pore opening [around E19]; 3) attaining the adult complement of taste buds [around posthatch (H) day 1], and 4) completed organogenesis (H 17). During this time span, vimentin-IR was characterized in a region including and sometimes bridging taste bud and subepithelial connective tissue, whereas non-gustatory surrounding epithelium and salivary glands were vimentin-immuno-negative. Intragemmally, the proportion of vimentin-IR cells as related to total taste bud cells peaked at E19. These results indicate that vimentin expression, in part, is related to the onset of taste bud cell proliferation and suggest that mesenchyme could be one source of taste bud cells. Secondly, fibronectin, an extracellular matrix component of the epithelial basement membrane interface with mesenchyme, was expressed at or near the apical surfaces of taste bud cells projecting into the bud lumen, and in the basal gemmal region suggesting the possible role of fibronectin as a chemotactic anchor for differentiating and migrating taste bud receptor cells. Lastly, neuron-specific enolase-IR indicates that axonal varicosities are already present intragemmally at E17-E18, that is, during the incipient period of identifiable taste bud primordia.  相似文献   

5.
Taste buds are multicellular receptor organs innervated by the VIIth, IXth, and Xth cranial nerves. In most vertebrates, taste buds differentiate after nerve fibers have reached the lingual epithelium, suggesting that nerves induce taste buds. However, under experimental conditions, taste buds of amphibians develop independently of innervation. Thus, rather than being induced by nerves, the developing taste periphery likely regulates ingrowing nerve fibers. To test this idea, we devised a culture approach using axolotl embryos. Gustatory neurons were generated from cultured epibranchial placodes, and when cultured alone, axon outgrowth was random over 4 days, a time period coincident with axon growth to the periphery in vivo. In contrast, cocultures of placodal neurons with oropharyngeal endoderm (OPE), the normal taste bud-containing target for these neurons, resulted in neurite growth toward the target tissue. Unexpectedly, placodal neurons also grew toward flank ectoderm (FE), which these neurons do not encounter in vivo. To compare further the impact of OPE and FE explants on gustatory neurons, cocultures were extended and examined at 6, 8, and 10 days, when, in vivo, placodal fibers have innervated the epithelium but prior to taste bud formation, when taste buds have differentiated and are innervated, and when the mouth has opened and larvae have begun to feed, respectively. The behavior of placodal axons with respect to target type did not differ between OPE and FE cocultures at 6 days. However, by 8 days, differences in axonal outgrowth were observed with respect to target type, and these differences were enhanced by 10 days in vitro. Most clearly, exuberant placodal fibers grew in 10-day OPE cocultures, and numerous neurites had invaded OPE explants by this time, whereas gustatory neurites were sparse in FE cocultures, and rarely approached and almost never contacted FE explants. Thus, embryonic endoderm destined to give rise to taste buds specifically attracts its innervation early in development, as placodal neurons send out axons. Later, when gustatory axons synapse with differentiated taste buds in vivo, the OPE provides trophic support for cultured gustatory neurons.  相似文献   

6.
Taste buds, the sensory organs for taste, have been described as arising solely from the surrounding epithelium, which is in distinction from other sensory receptors that are known to originate from neural precursors, i.e., neural ectoderm that includes neural crest (NC). Our previous study suggested a potential contribution of NC derived cells to early immature fungiform taste buds in late embryonic (E18.5) and young postnatal (P1-10) mice. In the present study we demonstrated the contribution of the underlying connective tissue (CT) to mature taste buds in mouse tongue and soft palate. Three independent mouse models were used for fate mapping of NC and NC derived connective tissue cells: (1) P0-Cre/R26-tdTomato (RFP) to label NC, NC derived Schwann cells and derivatives; (2) Dermo1-Cre/RFP to label mesenchymal cells and derivatives; and (3) Vimentin-CreER/mGFP to label Vimentin-expressing CT cells and derivatives upon tamoxifen treatment. Both P0-Cre/RFP and Dermo1-Cre/RFP labeled cells were abundant in mature taste buds in lingual taste papillae and soft palate, but not in the surrounding epithelial cells. Concurrently, labeled cells were extensively distributed in the underlying CT. RFP signals were seen in the majority of taste buds and all three types (I, II, III) of differentiated taste bud cells, with the neuronal-like type III cells labeled at a greater proportion. Further, Vimentin-CreER labeled cells were found in the taste buds of 3-month-old mice whereas Vimentin immunoreactivity was only seen in the CT. Taken together, our data demonstrate a previously unrecognized origin of taste bud cells from the underlying CT, a conceptually new finding in our knowledge of taste bud cell derivation, i.e., from both the surrounding epithelium and the underlying CT that is primarily derived from NC.  相似文献   

7.
Neurotrophins, neurotrophin receptors and sensory neurons are required for the development of lingual sense organs. For example, neurotrophin 3 sustains lingual somatosensory neurons. In the traditional view, sensory axons will terminate where neurotrophin expression is most pronounced. Yet, lingual somatosensory axons characteristically terminate in each filiform papilla and in each somatosensory prominence within a cluster of cells expressing the p75 neurotrophin receptor (p75NTR), rather than terminating among the adjacent cells that secrete neurotrophin 3. The p75NTR on special specialized clusters of epithelial cells may promote axonal arborization in vivo since its over-expression by fibroblasts enhances neurite outgrowth from overlying somatosensory neurons in vitro. Two classical observations have implicated gustatory neurons in the development and maintenance of mammalian taste buds—the early arrival times of embryonic innervation and the loss of taste buds after their denervation in adults. In the modern era more than a dozen experimental studies have used early denervation or neurotrophin gene mutations to evaluate mammalian gustatory organ development. Necessary for taste organ development, brain-derived neurotrophic factor sustains developing gustatory neurons. The cardinal conclusion is readily summarized: taste buds in the palate and tongue are induced by innervation. Taste buds are unstable: the death and birth of taste receptor cells relentlessly remodels synaptic connections. As receptor cells turn over, the sensory code for taste quality is probably stabilized by selective synapse formation between each type of gustatory axon and its matching taste receptor cell. We anticipate important new discoveries of molecular interactions among the epithelium, the underlying mesenchyme and gustatory innervation that build the gustatory papillae, their specialized epithelial cells, and the resulting taste buds.  相似文献   

8.
9.
Taste buds are specialized epithelial cell clusters in the oral squamous cell epithelium. Although taste buds have been reported to renew rapidly, the mechanism of cell cycle control in these specialized structures remains unresolved. To clarify the cell cycle status and role of cyclin-dependent kinase inhibitors (CDKI) for cell cycle control in the taste buds, we analyzed cell proliferation activity using bromodeoxyuridine (BrdU) and Ki-67 immunostainings and the expression of the Cip/Kip family of CDKI (p21Cip1, p27Kip1, and p57Kip2) in the circumvallate papillae of mouse and hamster. BrdU-positive cells were detected in the basal layer of the oral epithelium. In the taste buds, Ki-67-positive cells were seen in the basal area, with only a very few positive cells in the taste buds. Both p21Cip1 and p27Kip1 positive cells were seen in the suprabasal layer of the non-gustatory oral epithelium. In the taste buds, stronger p27Kip1 staining was detected than in the non-gustatory epithelium. Western blotting analysis revealed that p27Kip1 was abundant in the mucosal tissues from circumvallate papillae. Thus, our study suggests that the taste bud cells except for basal cells are post-mitotic cells and that the cell cycle arrest associated with taste bud cell differentiation could be regulated predominantly by p27Kip1.  相似文献   

10.
The distribution of calbindin D28k (CB)-like immunoreactivity (-LI) in the circumvallate papilla (CVP) was examined during development and regeneration following bilateral crush injury to the glossopharyngeal nerve in the rat. In the adult CVP, CB-like immunoreactive (-IR) nerve fibers were observed in the subgemmal region and some penetrated into the taste buds. CB-LI was also detected in the cytoplasm of the spindle-shaped gustatory cells in the lower half of the trench epithelium, which contained numerous synaptic vesicles and bundles of intermediate filaments. These CB-IR gustatory cells made synapse-like contacts with CB-IR nerve terminals. Some CB-IR nerve terminals made contacts with the gustatory cells negative for CB-LI. At least three developmental stages were defined with regard to the developmental changes in the distribution of CB-LI: (1) Stage I (embryonic day (E) 18–postnatal day (P)5): CB-IR nerve fibers appeared in the lamina propria just beneath the newly-formed CVP at E18, but the gustatory epithelium of the CVP contained no CB-IR structures. Taste buds with taste pores appeared at P1. (2) Stage II (P5–10): thin CB-IR nerve fibers began entering the trench epithelium, but no CB-IR cells were observed. (3) Stage III (P10–adult): in addition to the intragemmal and perigemmal CB-IR nerve fibers, very few CB-IR cells appeared in the taste buds around P10, and their numbers increased progressively. The changes in the distribution of taste buds and CB-LI following glossopharyngeal nerve injury were similar to those observed during development. On post-operative day (PO) 4, the taste buds and CB-IR cells decreased markedly in number. These CB-IR cells became round in shape, and the number of CB-IR nerve fibers decreased markedly. On PO8, both taste buds and CB-IR cells disappeared completely. The regenerated taste buds were first observed on PO12, increased rapidly in number by PO20, and increased slowly thereafter. CB-IR nerve fibers accumulated at the subgemmal region and began penetrating into the trench wall epithelium around PO16. CB-IR cells appeared between PO20 and PO24, and their numbers increased progressively and reached the normal level on PO40. The topographical localizations of the taste buds and CB-IR cells during development and regeneration were comparable to those of normal animals. The delay of the time courses for appearance of CB-IR nerve fibers and CB-IR cells compared to the appearance of taste buds during development and regeneration suggests that CB in the gustatory epithelium may participate in the survival of the taste bud cells rather than in the induction of the taste buds.  相似文献   

11.
The present study describes the distribution of taste buds and teeth in the oropharyngeal cavity of 13 species of adult (18–60 mm SL) Starksiini fishes inhabiting subtidal waters of the Neotropical region. Four types of taste buds described previously in other fish groups were observed within the oropharyngeal cavity, of which type I, situated on prominent protruding papillae, is the most common. The number of taste buds in this cavity varies considerably, ranging from ca. 202 in Starksia lepicoelia to ca. 770 in S. sluiteri. In all the studied species, taste buds are more numerous on the posterior (160–396) than on the anterior (42–294) part of the oropharyngeal cavity. The presence of different numbers of taste buds in different Starksiini species of the same standard length suggests that numbers of taste buds are not directly correlated with size and may be species‐specific. Teeth are found on the premaxilla, dentary, vomer, palatine (in some species) and the upper and lower pharyngeal jaws (third pharyngobranchials and fifth ceratobranchials, respectively); the form and number of teeth and taste buds on each of these sites differs among the various species of Starksiini and between them and closely related species of the labrisomid tribes Labrisomini, Mnierpini, and Paraclinini. The results thus suggest potential systematic value in certain features of the oropharyngeal cavity for blenniiform fishes. It is also shown that benthic‐feeding omnivorous fishes have higher densities of taste buds than piscivorous fishes. A possible correlation among numbers of taste buds, their positions in the oropharyngeal cavity, and other parameters is discussed. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Taste buds are composed of a variety of taste receptor cell types that develop from tongue epithelium and are regularly replenished under normal homeostatic conditions as well as after injury. The characteristics of cells that give rise to regenerating taste buds are poorly understood. Recent studies have suggested that Lgr5 (leucine-rich repeat-containing G-protein coupled receptor 5) identifies taste bud stem cells that contribute to homeostatic regeneration in adult circumvallate and foliate taste papillae, which are located in the posterior region of the tongue. Taste papillae in the adult anterior region of the tongue do not express Lgr5. Here, we confirm and extend these studies by demonstrating that Lgr5 cells give rise to both anterior and posterior taste buds during development, and are capable of regenerating posterior taste buds after injury induced by glossopharyngeal nerve transection.  相似文献   

13.
根据近年来有关大鼠、小鼠味觉发育方面的大量研究,对哺乳动物味蕾(taste buds)发育的情况进行了综述和讨论.哺乳动物舌面上的味蕾分布在菌状乳头(fungiform papillae,FF)、叶状乳头(foliate papillae,FL)、轮廓状乳头(circumvallate papillae,CV)之中,味蕾细胞(taste bud cells)不断地进行着周期性的更新,味蕾的形态、数量和功能随动物随年龄而变化.有关味孔头的研究表明,味乳头(gustatory papillae)在味蕾形成和维持味蕾存在及正常发育方面有着独特的功能.味乳头和味蕾的发育过程与细胞信号分子(signaling molecules)、味觉神经(gustatory nerve fibers)等许多因素有着密切的关系,其中有些作用机理至今尚无定论.  相似文献   

14.
 Taste buds are accumulations of elongated bipolar cells situated on lingual papillae. The factors that determine the sites where a taste bud may develop are largely obscure, although it is known that the early invasion of nerve fibers plays one of the key roles in taste bud development and maturation. The conditions under which taste bud primordium cells develop are influenced by the interaction between epithelial cells and extracellular matrix molecules of the mesenchyma, such as hyaluronan. Thus, we investigated immunohistochemically the distribution pattern of the receptor for hyaluronan, CD44s, and its epithelial variant isoforms CD44v6 and CD44v9, in taste buds of human embryonic, fetal, perinatal, and adult tongues. Furthermore, we wanted to determine the temporal and spatial relationships of CD44 to sensory innervation of taste bud primordia. In early gestational stages (weeks 7–9), CD44 and its isoforms are expressed on membranes of apical perigemmal (marginal) cells covering taste bud primordia. It seems that CD44 serves as a marker for marginal cells (perigemmal cells) in early developmental stages. The expression of CD44 follows rather than precedes the invasion of sensory nerve fibers and the development of taste bud primordia (weeks 7–8). In new-born and adult taste bud cells, only the standard molecule, CD44s, is expressed; the variant isoforms, CD44v6 and CD44v9, occur only in the adjacent epithelium. From these results it is likely that marginal cells are of the utmost importance for the development and maturation of taste buds. We presume that CD44 is involved in local binding, reuptake, and degradation of hyaluronan in the early stages of taste bud formation. CD44 probably does not induce the transformation of epithelial cells into taste bud primordial cells. What is more, CD44 may change its function in the course of developmental events. Accepted: 13 January 1998  相似文献   

15.
Study of the structural organization of gustatory apparatus in rainbow trout Parasalmo mykiss performed using electron scanning microscopy demonstrated that external taste buds are absent in this species in skin covers of the head and in the circumoral region. In the oropharyngeal cavity (oral and gill cavities and pharynx) of the rainbow trout, a well-developed gustatory receptor apparatus was found. In correspondence with specific features of morphology and anatomy of the skull, taste buds form seven gustatory zones. Morphometric analysis demonstrated differences between gustatory zones in the pattern and density of distribution of taste buds, as well as in average sizes of their sensory field. Zones of similar innervation have many common features in morphology. Morphologically similar zones form three regions in the oropharyngeal cavity: rostral, central, and caudal. A tendency for a decrease in the concentration of taste buds in the rostrocaudal direction common for all sensory zones was revealed. The highest concentration of taste buds was recorded at papillae of rostral regions near big teeth. A typical feature of taste buds in rainbow trout is irregular shape of the taste pore. Analysis of ultrastructural specific features of apical processes of taste cells allows us to distinguish five cell shapes in the composition of taste buds. The numeric ratio of cell shapes varies in buds of different localization. The quantitative distribution of taste buds over sensory zones, specific features of morphology and sizes of their sensory field are discussed in relation to the feeding pattern of the species.  相似文献   

16.
In insects, afferent neurons arise primarily from the ectodermal epithelium in the periphery and differentiate at the site of their precursor mitosis. Here we describe ectodermally derived cells that migrate away from their site of origin and initiate axonogenesis at a distant location. In embryonic grasshopper limb buds, the first two pairs of afferents to differentiate are the pair of Ti1 pioneers at the limb tip and the pair of Cx1 cells found at the base of the limb. While the Ti1 pioneers arise from the mitosis of a pioneer mother cell at the limb tip, the Cx1 cells are shown to emerge from the epithelium at circumferential positions that are approximately 150 degrees apart and that belong to different embryonic compartments. The cells migrate into contact with each other before initiating axonogenesis, and their axons then extend in a new direction that is orthogonal to the route of cell migration.  相似文献   

17.
Intermediate filaments in taste organs of terrestrial (human and chick) as well as aquatic (Xenopus laevis) species were detected using immunohistochemistry and electron microscopy. During development, the potential importance of the interface between the taste bud primordium and non-gustatory adjacent tissues is evidenced by the distinct immunoreactivity of a subpopulation of taste bud cells for cytokeratins and vimentin. In human foetuses, the selective molecular marker for taste bud primordia, cytokeratin 20, is not detectable prior to the ingrowth of nerve fibres into the epithelium, which supports the hypothesis that nerve fibres are necessary for initiating taste bud development. Another intermediate filament protein, vimentin, occurs in derivatives of mesoderm, but usually not in epithelium. In humans, vimentin immunoreactivity is expressed mainly in border (marginal) epithelial cells of taste bud primordia, while in chick, vimentin expression occurs in most taste bud cells, whereas non-gustatory epithelium is vimentin immunonegative. Our chick data suggest a relationship between the degree of vimentin expression and taste bud cell proliferation especially during the perihatching period. It is suggested that surrounding epithelial cells (human) and mesenchymal cells (chick) may be contributing sources of developing taste buds. The dense perinuclear network of intermediate filaments especially in dark (i.e. non-sensory) taste disc cells of Xenopus indicates that vimentin filaments also might be associated with cells of non-gustatory function. These results indicate that the mechanisms of taste bud differentiation from source tissues may differ among vertebrates of different taxa.  相似文献   

18.
We have analyzed the spatial and temporal patterns of B lymphocyte-induced maturation protein-1 (Blimp-1) expression during mouse embryonic development. Blimp-1 expression is induced early in the anterior definitive endoderm, mesoderm of head process, and prechordal plate. In ectoderm-derived tissues at later stages, Blimp-1 expression is found in the primitive photoreceptors of neural retina, in differentiated epithelial cells of epidermis, tongue, oral and nasal cavities, and in the precursors of internal root sheaths of hair follicles. In mesoderm-derived tissues, Blimp-1 expression is observed in splanchnopleure, a subset of somatopleure-derived cells in limb buds, and myotomes of somites. Blimp-1 is also expressed in mesenchyme of developing hand plates, digits, branchial arches, nasal processes, and external genitalia. Blimp-1 is present in mesenchyme-derived chondroblasts, supporting cells of taste buds, and papilla of teeth, hair follicles and taste buds. In endoderm-derived tissues, Blimp-1 expression in the foregut region is restricted to a subset of epithelial cells at the headfold stage while expression in the endodermal epithelium of midgut and hindgut persists from the headfold stage to birth. Finally, Blimp-1 is expressed in the migrating primordial germ cells.  相似文献   

19.
In mammals, taste buds are maintained by continuous turnover of cells, even in adulthood. Cell proliferation and differentiation continue to produce taste cells, which express various genes related to taste reception. We found the co-expression of Sonic hedgehog (Shh) with Prox1 and that of Nkx2.2 with Mash1 in adult mouse taste buds. Whereas Prox1was expressed strongly in cells in the basal region of mouse taste buds where Shh was co-expressed, it was expressed weakly in almost all taste bud cells lacking Shh expression. At 0.5 day after birth, when taste cells have not yet differentiated, the expressions of Shh and Prox1 completely overlapped in the epithelium of circumvallate papillae. Nkx2.2 was observed in cells expressing Mash1, but not in cells expressing genes related to taste reception, such as gustducin and T1R3. Almost all fusiform cells expressing Mash1 co-expressed Nkx2.2, while the majority of round cells expressing Mash1 in the basal region of taste buds lacked Nkx2.2 expression.  相似文献   

20.
Taste buds are clusters of polarized sensory cells embedded in stratified oral epithelium. In adult mammals, taste buds turn over continuously and are replenished through the birth of new cells in the basal layer of the surrounding non-sensory epithelium. The half-life of cells in mammalian taste buds has been estimated as 8–12 days on average. Yet, earlier studies did not address whether the now well-defined functional taste bud cell types all exhibit the same lifetime. We employed a recently developed thymidine analog, 5-ethynil-2′-deoxyuridine (EdU) to re-evaluate the incorporation of newly born cells into circumvallate taste buds of adult mice. By combining EdU-labeling with immunostaining for selected markers, we tracked the differentiation and lifespan of the constituent cell types of taste buds. EdU was primarily incorporated into basal extragemmal cells, the principal source for replenishing taste bud cells. Undifferentiated EdU-labeled cells began migrating into circumvallate taste buds within 1 day of their birth. Type II (Receptor) taste cells began to differentiate from EdU-labeled precursors beginning 2 days after birth and then were eliminated with a half-life of 8 days. Type III (Presynaptic) taste cells began differentiating after a delay of 3 days after EdU-labeling, and they survived much longer, with a half-life of 22 days. We also scored taste bud cells that belong to neither Type II nor Type III, a heterogeneous group that includes mostly Type I cells, and also undifferentiated or immature cells. A non-linear decay fit described these cells as two sub-populations with half-lives of 8 and 24 days respectively. Our data suggest that many post-mitotic cells may remain quiescent within taste buds before differentiating into mature taste cells. A small number of slow-cycling cells may also exist within the perimeter of the taste bud. Based on their incidence, we hypothesize that these may be progenitors for Type III cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号