首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small GTPase Ran is essential for spindle assembly. Ran is proposed to act through its nuclear import receptors importin alpha and/or importin beta to control the sequestration of proteins necessary for spindle assembly. To date, the molecular mechanisms by which the Ran pathway functions remain unclear. Using purified proteins, we have reconstituted Ran-regulated microtubule binding of the C-terminal kinesin XCTK2, a kinesin important for spindle assembly. We show that the tail of XCTK2 binds to microtubules and that this binding is inhibited in the presence of importin alpha and beta (alpha/beta) and restored by addition of Ran-GTP. The bipartite nuclear localization signal (NLS) in the tail of XCTK2 is essential to this process, because mutation of the NLS abolishes importin alpha/beta-mediated regulation of XCTK2 microtubule binding. Our data show that importin alpha/beta directly regulates the activity of XCTK2 and that one of the molecular mechanisms of Ran-regulated spindle assembly is identical to that used in classical NLS-driven nuclear transport.  相似文献   

2.
BACKGROUND: The pole-to-pole distance of the metaphase spindle is reasonably constant in a given cell type; in the case of vertebrate female oocytes, this steady-state length can be maintained for substantial lengths of time, during which time microtubules remain highly dynamic. Although a number of molecular perturbations have been shown to influence spindle length, a global understanding of the factors that determine metaphase spindle length has not been achieved. RESULTS: Using the Drosophila S2 cell line, we depleted or overexpressed proteins that either generate sliding forces between spindle microtubules (Kinesin-5, Kinesin-14, dynein), promote microtubule polymerization (EB1, Mast/Orbit [CLASP], Minispindles [Dis1/XMAP215/TOG]) or depolymerization (Kinesin-8, Kinesin-13), or mediate sister-chromatid cohesion (Rad21) in order to explore how these forces influence spindle length. Using high-throughput automated microscopy and semiautomated image analyses of >4000 spindles, we found a reduction in spindle size after RNAi of microtubule-polymerizing factors or overexpression of Kinesin-8, whereas longer spindles resulted from the knockdown of Rad21, Kinesin-8, or Kinesin-13. In contrast, and differing from previous reports, bipolar spindle length is relatively insensitive to increases in motor-generated sliding forces. However, an ultrasensitive monopolar-to-bipolar transition in spindle architecture was observed at a critical concentration of the Kinesin-5 sliding motor. These observations could be explained by a quantitative model that proposes a coupling between microtubule depolymerization rates and microtubule sliding forces. CONCLUSIONS: By integrating extensive RNAi with high-throughput image-processing methodology and mathematical modeling, we reach to a conclusion that metaphase spindle length is sensitive to alterations in microtubule dynamics and sister-chromatid cohesion, but robust against alterations of microtubule sliding force.  相似文献   

3.
During spindle assembly, microtubules may attach to kinetochores or pair to form antiparallel pairs or interpolar microtubules, which span the two spindle poles and contribute to mitotic pole separation and chromosome segregation. Events in the specification of the interpolar microtubules are poorly understood. Using three-dimensional electron tomography and analysis of spindle dynamical behavior in living cells, we investigated the process of spindle assembly. Unexpectedly, we found that the phosphorylation state of an evolutionarily conserved Cdk1 site (S360) in γ-tubulin is correlated with the number and organization of interpolar microtubules. Mimicking S360 phosphorylation (S360D) results in bipolar spindles with a normal number of microtubules but lacking interpolar microtubules. Inhibiting S360 phosphorylation (S360A) results in spindles with interpolar microtubules and high-angle, antiparallel microtubule pairs. The latter are also detected in wild-type spindles <1 μm in length, suggesting that high-angle microtubule pairing represents an intermediate step in interpolar microtubule formation. Correlation of spindle architecture with dynamical behavior suggests that microtubule pairing is sufficient to separate the spindle poles, whereas interpolar microtubules maintain the velocity of pole displacement during early spindle assembly. Our findings suggest that the number of interpolar microtubules formed during spindle assembly is controlled in part through activities at the spindle poles.  相似文献   

4.
We used a peptide antibody to a conserved sequence in the motor domain of kinesins to screen a Xenopus ovary cDNA expression library. Among the clones isolated were two that encoded a protein we named XCTK2 for Xenopus COOH-terminal kinesin 2. XCTK2 contains an NH2-terminal globular domain, a central α-helical stalk, and a COOH-terminal motor domain. XCTK2 is similar to CTKs in other organisms and is most homologous to CHO2. Antibodies raised against XCTK2 recognize a 75-kD protein in Xenopus egg extracts that cosediments with microtubules. In Xenopus tissue culture cells, the anti-XCTK2 antibodies stain mitotic spindles as well as a subset of interphase nuclei. To probe the function of XCTK2, we have used an in vitro assay for spindle assembly in Xenopus egg extracts. Addition of antibodies to cytostatic factor- arrested extracts causes a 70% reduction in the percentage of bipolar spindles formed. XCTK2 is not required for maintenance of bipolar spindles, as antibody addition to preformed spindles has no effect. To further evaluate the function of XCTK2, we expressed XCTK2 in insect Sf-9 cells using the baculovirus expression system. When purified (recombinant XCTK2 is added to Xenopus egg extracts at a fivefold excess over endogenous levels) there is a stimulation in both the rate and extent of bipolar spindle formation. XCTK2 exists in a large complex in extracts and can be coimmunoprecipitated with two other proteins from extracts. XCTK2 likely plays an important role in the establishment and structural integrity of mitotic spindles.  相似文献   

5.
P38αMAPK (p38α) is usually activated in response to various stresses and plays a role in the inhibition of cell proliferation and tumor progression, but little is known about its roles in meiotic spindle assembly. In this study, we characterized the dynamic localization of p38α and explored its function in mouse oocyte meiotic maturation. P38α specifically colocalized with γ-tubulin and Plk1 at the center of MTOCs and spindle poles. Depletion of p38α by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes probably via MK2 dephosphorylation. Notably, depletion of p38α led to significant spindle pole defects, spindle elongation, non-tethered kinetochore microtubules and increased microtubule tension. The disruption of spindle stability was coupled with decreased γ-tubulin and Plk1 at MTOCs. Overexpression of Eg5, a conserved motor protein, also caused spindle elongation and its morpholino injection almost completely rescued spindle elongation caused by p38α depletion. In addition, p38α-depletion decreased BubR1 and interfered with spindle assembly checkpoint (SAC), which resulted in aneuploid oocytes. Together, these data indicate that p38α is an important component of MTOCs, which regulates spindle assembly and spindle length, as well as stabilizes the spindle and spindle poles. Perturbed SAC and abnormal microtubule tension may be responsible for the misaligned chromosomes and high aneuploidy in p38α-depleted mouse oocytes.Key words: p38α, meiosis, mouse oocyte, spindle assembly, microtubule organization center (MTOC), Eg5, spindle assembly checkpoint  相似文献   

6.
A 97-kD component of nuclear pore-targeting complex (the β-subunit of nuclear pore–targeting complex [PTAC]/importin/karyopherin) mediates the import of nuclear localization signal (NLS)-containing proteins by anchoring the NLS receptor protein (the α-subunit of PTAC/importin/karyopherin) to the nuclear pore complex (NPC). The import requires a small GTPase Ran, which interacts directly with the β-subunit. The present study describes an examination of the behavior of the β-subunit in living cells and in digitonin-permeabilized cells. In living cells, cytoplasmically injected β-subunit rapidly migrates into the nucleus. The use of deletion mutants reveals that nuclear migration of the β-subunit requires neither Ran- nor α-subunit–binding but only the NPC-binding domain of this molecule, which is also involved in NLS-mediated import. Furthermore, unlike NLS-mediated import, a dominant-negative Ran, defective in GTP-hydrolysis, did not inhibit nuclear migration of the β-subunit. In the digitonin-permeabilized cell-free import assay, the β-subunit transits rapidly through the NPC into the nucleus in a saturating manner in the absence of exogenous addition of soluble factors. These results show that the β-subunit undergoes translocation at the NPC in a Ran-unassisted manner when it does not carry α-subunit/NLS substrate. Therefore, a requirement for Ran arises only when the β-subunit undergoes a translocation reaction together with the α-subunit/NLS substrate. The results provide an insight to the yet unsolved question regarding the mechanism by which proteins are directionally transported through the NPC, and the role of Ran in this process.  相似文献   

7.
We have prepared antibodies specific for HSET, the human homologue of the KAR3 family of minus end-directed motors. Immuno-EM with these antibodies indicates that HSET frequently localizes between microtubules within the mammalian metaphase spindle consistent with a microtubule cross-linking function. Microinjection experiments show that HSET activity is essential for meiotic spindle organization in murine oocytes and taxol-induced aster assembly in cultured cells. However, inhibition of HSET did not affect mitotic spindle architecture or function in cultured cells, indicating that centrosomes mask the role of HSET during mitosis. We also show that (acentrosomal) microtubule asters fail to assemble in vitro without HSET activity, but simultaneous inhibition of HSET and Eg5, a plus end-directed motor, redresses the balance of forces acting on microtubules and restores aster organization. In vivo, centrosomes fail to separate and monopolar spindles assemble without Eg5 activity. Simultaneous inhibition of HSET and Eg5 restores centrosome separation and, in some cases, bipolar spindle formation. Thus, through microtubule cross-linking and oppositely oriented motor activity, HSET and Eg5 participate in spindle assembly and promote spindle bipolarity, although the activity of HSET is not essential for spindle assembly and function in cultured cells because of centrosomes.  相似文献   

8.
Cells generate diverse microtubule populations by polymerization of a common α/β-tubulin building block. How microtubule associated proteins translate microtubule heterogeneity into specific cellular functions is not clear. We evaluated the ability of kinesin motors involved in vesicle transport to read microtubule heterogeneity by using single molecule imaging in live cells. We show that individual Kinesin-1 motors move preferentially on a subset of microtubules in COS cells, identified as the stable microtubules marked by post-translational modifications. In contrast, individual Kinesin-2 (KIF17) and Kinesin-3 (KIF1A) motors do not select subsets of microtubules. Surprisingly, KIF17 and KIF1A motors that overtake the plus ends of growing microtubules do not fall off but rather track with the growing tip. Selection of microtubule tracks restricts Kinesin-1 transport of VSVG vesicles to stable microtubules in COS cells whereas KIF17 transport of Kv1.5 vesicles is not restricted to specific microtubules in HL-1 myocytes. These results indicate that kinesin families can be distinguished by their ability to recognize microtubule heterogeneity. Furthermore, this property enables kinesin motors to segregate membrane trafficking events between stable and dynamic microtubule populations.  相似文献   

9.
The spindle is a fusiform bipolar-microtubule array that is responsible for chromosome segregation during mitosis. Focused poles are an essential feature of spindles in vertebrate somatic cells, and pole focusing has been shown to occur through a centrosome-independent self-organization mechanism where microtubule motors cross-link and focus microtubule minus ends. Most of our understanding of this mechanism for pole focusing derives from studies performed in cell-free extracts devoid of centrosomes and kinetochores. Here, we examine how sustained force from kinetochores influences the mechanism of pole focusing in cultured cells. We show that the motor-driven self-organization activities associated with NuMA (i.e., cytoplasmic dynein) and HSET are not necessary for pole focusing if sustained force from kinetochores is inhibited in Nuf2- or Mis12-deficient cells. Instead, pole organization relies on TPX2 as it cross-links spindle microtubules to centrosome-associated mitotic asters. Thus, both motor-driven and static-cross-linking mechanisms contribute to spindle-pole organization, and kinetochore activity influences the mechanism of spindle-pole organization. The motor-driven self-organization of microtubule minus ends at spindle poles is needed to organize spindle poles in vertebrate somatic cells when kinetochores actively exert force on spindle microtubules.  相似文献   

10.
Nonredundant functions of Kinesin-13s during meiotic spindle assembly   总被引:3,自引:0,他引:3  
Spatiotemporal control of microtubule depolymerization during cell division underlies the construction and dynamics of mitotic and meiotic spindles. Owing to their potent ability to disassemble microtubules, Kinesin-13s constitute an important class of microtubule destabilizing factors. Unfertilized Xenopus eggs, similar to other metazoan cells, contain the prototypical Kinesin-13 MCAK as well as a second family member, XKIF2. Here, we compare the roles of MCAK and XKIF2 during spindle assembly in Xenopus extracts. We find that although MCAK and XKIF2 have similar localization and biochemical properties, XKIF2 is not required for spindle assembly and, further, cannot substitute for MCAK. Altering dosage of the two kinesins demonstrates that spindle length is exquisitely sensitive to MCAK concentration but not XKIF2 concentration. Finally, we demonstrate that the rate of poleward microtubule flux in Xenopus-extract spindles is unaffected by XKIF2 depletion and is only modestly sensitive to reduction of MCAK action. We suggest that, in contrast to models proposed for mammalian somatic cell and embryonic Drosophila spindles, Kinesin-13s do not play a central role in poleward flux by depolymerizing minus ends. Rather, MCAK, but not XKIF2, plays a central role in regulating dynamic instability of plus ends and controls spindle length by that mechanism.  相似文献   

11.
Kinesin-like proteins are integral to formation and function of a conserved mitotic spindle apparatus that directs chromosome segregation and precedes cell division. Ubiquitous to the mechanism of spindle assembly and stability are balanced Kinesin-5 promoting and Kinesin-14 opposing forces. Distinct Kinesin-14 roles in bipolarity in eukaryotes have not been shown, but are suggested by γ-tubulin-based pole interactions that affect establishment and by microtubule cross-linking and sliding that maintain bipolarity and spindle length. Distinct roles also imply specialized functional domains. By cross-species analysis of compatible mechanisms in establishing mitotic bipolarity we demonstrate that Kinesin-14 human HSET (HsHSET) functionally replaces Schizosaccharomyces pombe Pkl1 and its action is similarly blocked by mutation in a Kinesin-14 binding site on γ-tubulin. Drosophila DmNcd localizes preferentially to bundled interpolar microtubules in fission yeast and does not replace SpPkl1. Analysis of twenty-six Kinesin-14 derivatives, including Tail, Stalk or Neck-Motor chimeras, for spindle localization, spindle assembly and mitotic progression defined critical domains. The Tail of SpPkl1 contains functional elements enabling its role in spindle assembly that are distinct from but transferable to DmNcd, whereas HsHSET function utilizes both Tail and Stalk features. Our analysis is the first to demonstrate distinct mechanisms between SpPkl1 and DmNcd, and reveal that HsHSET shares functional overlap in spindle pole mechanisms.  相似文献   

12.
The small GTPase Ran, bound to GTP, is required for the induction of spindle formation by chromosomes in M phase. High concentrations of Ran.GTP are proposed to surround M phase chromatin. We show that the action of Ran.GTP in spindle formation requires TPX2, a microtubule-associated protein previously known to target a motor protein, Xklp2, to microtubules. TPX2 is normally inactivated by binding to the nuclear import factor, importin alpha, and is displaced from importin alpha by the action of Ran.GTP. TPX2 is required for Ran.GTP and chromatin-induced microtubule assembly in M phase extracts and mediates spontaneous microtubule assembly when present in excess over free importin alpha. Thus, components of the nuclear transport machinery serve to regulate spindle formation in M phase.  相似文献   

13.
The three-dimensional organization of mitotic microtubules in a mutant strain of Saccharomyces cerevisiae has been studied by computer-assisted serial reconstruction. At the nonpermissive temperature, cdc20 cells arrested with a spindle length of approximately 2.5 microns. These spindles contained a mean of 81 microtubules (range, 56-100) compared with 23 in wild-type spindles of comparable length. This increase in spindle microtubule number resulted in a total polymer length up to four times that of wild-type spindles. The spindle pole bodies in the cdc20 cells were approximately 2.3 times the size of wild-type, thereby accommodating the abnormally large number of spindle microtubules. The cdc20 spindles contained a large number of interpolar microtubules organized in a "core bundle." A neighbor density analysis of this bundle at the spindle midzone showed a preferred spacing of approximately 35 nm center-to-center between microtubules of opposite polarity. Although this is evidence of specific interaction between antiparallel microtubules, mutant spindles were less ordered than the spindle of wild-type cells. The number of noncore microtubules was significantly higher than that reported for wild-type, and these microtubules did not display a characteristic metaphase configuration. cdc20 spindles showed significantly more cross-bridges between spindle microtubules than were seen in the wild type. The cross-bridge density was highest between antiparallel microtubules. These data suggest that spindle microtubules are stabilized in cdc20 cells and that the CDC20 gene product may be involved in cell cycle processes that promote spindle microtubule disassembly.  相似文献   

14.
Mitotic spindles assemble from two centrosomes, which are major microtubule‐organizing centers (MTOCs) that contain centrioles. Meiotic spindles in oocytes, however, lack centrioles. In mouse oocytes, spindle microtubules are nucleated from multiple acentriolar MTOCs that are sorted and clustered prior to completion of spindle assembly in an “inside‐out” mechanism, ending with establishment of the poles. We used HSET (kinesin‐14) as a tool to shift meiotic spindle assembly toward a mitotic “outside‐in” mode and analyzed the consequences on the fidelity of the division. We show that HSET levels must be tightly gated in meiosis I and that even slight overexpression of HSET forces spindle morphogenesis to become more mitotic‐like: rapid spindle bipolarization and pole assembly coupled with focused poles. The unusual length of meiosis I is not sufficient to correct these early spindle morphogenesis defects, resulting in severe chromosome alignment abnormalities. Thus, the unique “inside‐out” mechanism of meiotic spindle assembly is essential to prevent chromosomal misalignment and production of aneuploidy gametes.  相似文献   

15.
The mitotic spindle is crucial to achieve segregation of sister chromatids. To identify new mitotic spindle assembly regulators, we isolated 855 microtubule-associated proteins (MAPs) from Drosophila melanogaster mitotic or interphasic embryos. Using RNAi, we screened 96 poorly characterized genes in the Drosophila central nervous system to establish their possible role during spindle assembly. We found that Ensconsin/MAP7 mutant neuroblasts display shorter metaphase spindles, a defect caused by a reduced microtubule polymerization rate and enhanced by centrosome ablation. In agreement with a direct effect in regulating spindle length, Ensconsin overexpression triggered an increase in spindle length in S2 cells, whereas purified Ensconsin stimulated microtubule polymerization in vitro. Interestingly, ensc-null mutant flies also display defective centrosome separation and positioning during interphase, a phenotype also detected in kinesin-1 mutants. Collectively, our results suggest that Ensconsin cooperates with its binding partner Kinesin-1 during interphase to trigger centrosome separation. In addition, Ensconsin promotes microtubule polymerization during mitosis to control spindle length independent of Kinesin-1.  相似文献   

16.
Importin alpha-regulated nucleation of microtubules by TPX2   总被引:1,自引:0,他引:1  
The importin alpha-regulated microtubule-associated protein TPX2 is known to be critical for meiotic and mitotic spindle formation in vertebrates, but its detailed mechanism of action and regulation is not understood. Here, the site of interaction on TPX2 for importin alpha is mapped. A TPX2 mutant that cannot bind importin alpha is constitutively active in the induction of microtubule-containing aster-like structures in Xenopus egg extract, demonstrating that no other importin alpha or RanGTPase target is required to mediate microtubule assembly in this system. Further, recombinant TPX2 is shown to induce the formation and bundling of microtubules in dilute solutions of pure tubulin. In this purified system, importin alpha prevents TPX2-induced microtubule formation, but not TPX2-tubulin interaction or microtubule bundling. This demonstrates that TPX2 has more than one mode of interaction with tubulin and that only one of these types of interaction is abolished by importin alpha. The data suggest that the critical early function in spindle formation regulated by importin alpha is TPX2-mediated microtubule nucleation.  相似文献   

17.
To assemble mitotic spindles, cells nucleate microtubules from a variety of sources including chromosomes and centrosomes. We know little about how the regulation of microtubule nucleation contributes to spindle bipolarity and spindle size. The Aurora A kinase activator TPX2 is required for microtubule nucleation from chromosomes as well as for spindle bipolarity. We use bacterial artificial chromosome-based recombineering to introduce point mutants that block the interaction between TPX2 and Aurora A into human cells. TPX2 mutants have very short spindles but, surprisingly, are still bipolar and segregate chromosomes. Examination of microtubule nucleation during spindle assembly shows that microtubules fail to nucleate from chromosomes. Thus, chromosome nucleation is not essential for bipolarity during human cell mitosis when centrosomes are present. Rather, chromosome nucleation is involved in spindle pole separation and setting spindle length. A second Aurora A-independent function of TPX2 is required to bipolarize spindles.  相似文献   

18.
In the oocytes of many animals including humans, the meiotic spindle assembles without centrosomes. It is still unclear how multiple pathways contribute to spindle microtubule assembly, and whether they are regulated differently in mitosis and meiosis. Augmin is a γ-tubulin recruiting complex which “amplifies” spindle microtubules by generating new microtubules along existing ones in mitosis. Here we show that in Drosophila melanogaster oocytes Augmin is dispensable for chromatin-driven assembly of bulk spindle microtubules, but is required for full microtubule assembly near the poles. The level of Augmin accumulated at spindle poles is well correlated with the degree of chromosome congression. Fluorescence recovery after photobleaching shows that Augmin stably associates with the polar regions of the spindle in oocytes, unlike in mitotic cells where it transiently and uniformly associates with the metaphase spindle. This stable association is enhanced by γ-tubulin and the kinesin-14 Ncd. Therefore, we suggest that meiosis-specific regulation of Augmin compensates for the lack of centrosomes in oocytes by actively biasing sites of microtubule generation within the spindle.  相似文献   

19.
Dynein light chain 1 (LC8), a highly conserved protein, is known to bind to a variety of different polypeptides. It functions as a dimer, which is inactivated through phosphorylation at the Ser-88 residue. A loss of LC8 function causes apoptosis in Drosophila embryos, and its overexpression induces malignant transformation of breast cancer cells. Here we show that LC8 binds to tubulin, promotes microtubule assembly, and induces the bundling of reconstituted microtubules in vitro. Furthermore, LC8 decorates microtubules both in Drosophila embryos and in HeLa cells, increases the microtubule stability, and promotes microtubule bundling in these cells. Microtubule stability influences a number of different cellular functions including mitosis and cell differentiation. The LC8 overexpression reduces the susceptibility of microtubules to cold and nocodazole-induced depolymerization in tissue-cultured cells and increases microtubule acetylation, suggesting that LC8 stabilizes microtubules. We also show that LC8 knockdown or transfection with inhibitory peptides destabilizes microtubules and inhibits bipolar spindle assembly in HeLa cells. In addition, LC8 knockdown leads to the mitotic block in HeLa cells. Furthermore, molecular docking analysis using the crystal structures of tubulin and LC8 dimer indicated that the latter may bind at α-β tubulin junction in a protofilament at sites distinct from the kinesin and dynein binding sites. Together, we provide the first evidence of a novel microtubule-associated protein-like function of LC8 that could explain its reported roles in cellular metastasis and differentiation.  相似文献   

20.
Polarized transport by microtubule-based motors is critical for neuronal development and function. Selective translocation of the Kinesin-1 motor domain is the earliest known marker of axonal identity, occurring before morphological differentiation. Thus, Kinesin-1–mediated transport may contribute to axonal specification. We tested whether posttranslational modifications of tubulin influence the ability of Kinesin-1 motors to distinguish microtubule tracks during neuronal development. We detected no difference in microtubule stability between axons and minor neurites in polarized stage 3 hippocampal neurons. In contrast, microtubule modifications were enriched in a subset of neurites in unpolarized stage 2 cells and the developing axon in polarized stage 3 cells. This enrichment correlated with the selective accumulation of constitutively active Kinesin-1 motors. Increasing tubulin acetylation, without altering the levels of other tubulin modifications, did not alter the selectivity of Kinesin-1 accumulation in polarized cells. However, globally enhancing tubulin acetylation, detyrosination, and polyglutamylation by Taxol treatment or inhibition of glycogen synthase kinase 3β decreased the selectivity of Kinesin-1 translocation and led to the formation of multiple axons. Although microtubule acetylation enhances the motility of Kinesin-1, the preferential translocation of Kinesin-1 on axonal microtubules in polarized neuronal cells is not determined by acetylation alone but is probably specified by a combination of tubulin modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号