共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient formation of specific intermolecular interactions is essential for self-assembly of biological structures. The foldon domain is an evolutionarily optimized trimerization module required for assembly of the large, trimeric structural protein fibritin from phage T4. Monomers consisting of the 27 amino acids comprising a single foldon domain subunit spontaneously form a natively folded trimer. During assembly of the foldon domain, a monomeric intermediate is formed on the submillisecond time scale, which provides the basis for two consecutive very fast association reactions. Mutation of an intermolecular salt bridge leads to a monomeric protein that resembles the kinetic intermediate in its spectroscopic properties. NMR spectroscopy revealed essentially native topology of the monomeric intermediate with defined hydrogen bonds and side-chain interactions but largely reduced stability compared to the native trimer. This structural preorganization leads to an asymmetric charge distribution on the surface that can direct rapid subunit recognition. The low stability of the intermediate allows a large free-energy gain upon trimerization, which serves as driving force for rapid assembly. These results indicate different free-energy landscapes for folding of small oligomeric proteins compared to monomeric proteins, which typically avoid the transient population of intermediates. 相似文献
2.
McFeeters RL Xiong C O'Keefe BR Bokesch HR McMahon JB Ratner DM Castelli R Seeberger PH Byrd RA 《Journal of molecular biology》2007,369(2):451-461
The solution structure of the potent 95 residue anti-HIV protein scytovirin has been determined and two carbohydrate-binding sites have been identified. This unique protein, containing five structurally important disulfide bonds, demonstrates a novel fold with no elements of extended regular secondary structure. Scytovirin contains two 39 residue sequence repeats, differing in only three amino acid residues, and each repeat has primary sequence similarity to chitin binding proteins. Both sequence repeats form similarly structured domains, with the exception of one region. The result is two carbohydrate-binding sites with substantially different affinities. The unusual fold clusters aromatic residues in both sites, suggesting a binding mechanism similar to other known hevein-like carbohydrate-binding proteins but differing in carbohydrate specificity. Scytovirin, originally isolated from the cyanobacterium Scytonema varium, holds potential as an HIV entry inhibitor for both therapeutic and prophylactic anti-HIV applications. The high-resolution structural studies reported are an important initial step in unlocking the therapeutic potential of scytovirin. 相似文献
3.
Matousek WM Ciani B Fitch CA Garcia-Moreno B Kammerer RA Alexandrescu AT 《Journal of molecular biology》2007,374(1):206-219
Ion pairs are ubiquitous in X-ray structures of coiled coils, and mutagenesis of charged residues can result in large stability losses. By contrast, pKa values determined by NMR in solution often predict only small contributions to stability from charge interactions. To help reconcile these results we used triple-resonance NMR to determine pKa values for all groups that ionize between pH 1 and 13 in the 33 residue leucine zipper fragment, GCN4p. In addition to the native state we also determined comprehensive pKa values for two models of the GCN4p denatured state: the protein in 6 M urea, and unfolded peptide fragments of the protein in water. Only residues that form ion pairs in multiple X-ray structures of GCN4p gave large pKa differences between the native and denatured states. Moreover, electrostatic contributions to stability were not equivalent for oppositely charged partners in ion pairs, suggesting that the interactions between a charge and its environment are as important as those within the ion pair. The pH dependence of protein stability calculated from NMR-derived pKa values agreed with the stability profile measured from equilibrium urea-unfolding experiments as a function of pH. The stability profile was also reproduced with structure-based continuum electrostatic calculations, although contributions to stability were overestimated at the extremes of pH. We consider potential sources of errors in the calculations, and how pKa predictions could be improved. Our results show that although hydrophobic packing and hydrogen bonding have dominant roles, electrostatic interactions also make significant contributions to the stability of the coiled coil. 相似文献
4.
Structural basis for ubiquitin recognition by SH3 domains 总被引:1,自引:0,他引:1
The SH3 domain is a protein-protein interaction module commonly found in intracellular signaling and adaptor proteins. The SH3 domains of multiple endocytic proteins have been recently implicated in binding ubiquitin, which serves as a signal for diverse cellular processes including gene regulation, endosomal sorting, and protein destruction. Here we describe the solution NMR structure of ubiquitin in complex with an SH3 domain belonging to the yeast endocytic protein Sla1. The ubiquitin binding surface of the Sla1 SH3 domain overlaps substantially with the canonical binding surface for proline-rich ligands. Like many other ubiquitin-binding motifs, the SH3 domain engages the Ile44 hydrophobic patch of ubiquitin. A phenylalanine residue located at the heart of the ubiquitin-binding surface of the SH3 domain serves as a key specificity determinant. The structure of the SH3-ubiquitin complex explains how a subset of SH3 domains has acquired this non-traditional function. 相似文献
5.
Clark AT Smith K Muhandiram R Edmondson SP Shriver JW 《Journal of molecular biology》2007,372(4):992-1008
Sac7d and Sso7d are homologous, hyperthermophile proteins with a high density of charged surface residues and potential ion pairs. To determine the relative importance of specific amino acid side-chains in defining the stability and function of these Archaeal chromatin proteins, pK(a) values were measured for the acidic residues in both proteins using (13)C NMR chemical shifts. The stability of Sso7d enabled titrations to pH 1 under low-salt conditions. Two aspartate residues in Sso7d (D16 and D35) and a single glutamate residue (G54) showed significantly perturbed pK(a) values in low salt, indicating that the observed pH-dependence of stability was primarily due to these three residues. The pH-dependence of backbone amide NMR resonances demonstrated that perturbation of all three pK(a) values was primarily the result of side-chain to backbone amide hydrogen bonds. Few of the significantly perturbed acidic pK(a) values in Sac7d and Sso7d could be attributed to primarily ion pair or electrostatic interactions. A smaller perturbation of E48 (E47 in Sac7d) was ascribed to an ion pair interaction that may be important in defining the DNA binding surface. The small number (three) of significantly altered pK(a) values was in good agreement with a linkage analysis of the temperature, pH, and salt-dependence of folding. The linkage of the ionization of two or more side-chains to protein folding led to apparent cooperativity in the pH-dependence of folding, although each group titrated independently with a Hill coefficient near unity. These results demonstrate that the acid pH-dependence of protein stability in these hyperthermophile proteins is due to independent titration of acidic residues with pK(a) values perturbed primarily by hydrogen bonding of the side-chain to the backbone. This work demonstrates the need for caution in using structural data alone to argue the importance of ion pairs in stabilizing hyperthermophile proteins. 相似文献
6.
Conformational Dynamics and Structural Plasticity Play Critical Roles in the Ubiquitin Recognition of a UIM Domain 总被引:1,自引:0,他引:1
Nikolaos G. Sgourakis Mayank M. Patel Angel E. Garcia George I. Makhatadze Scott A. McCallum 《Journal of molecular biology》2010,396(4):1128-1144
Ubiquitin-interacting motifs (UIMs) are an important class of protein domains that interact with ubiquitin or ubiquitin-like proteins. These approximately 20-residue-long domains are found in a variety of ubiquitin receptor proteins and serve as recognition modules towards intracellular targets, which may be individual ubiquitin subunits or polyubiquitin chains attached to a variety of proteins. Previous structural studies of interactions between UIMs and ubiquitin have shown that UIMs adopt an extended structure of a single α-helix, containing a hydrophobic surface with a conserved sequence pattern that interacts with key hydrophobic residues on ubiquitin. In light of this large body of structural studies, details regarding the presence and the roles of structural dynamics and plasticity are surprisingly lacking. In order to better understand the structural basis of ubiquitin-UIM recognition, we have characterized changes in the structure and dynamics of ubiquitin upon binding of a UIM domain from the yeast Vps27 protein. The solution structure of a ubiquitin-UIM fusion protein designed to study these interactions is reported here and found to consist of a well-defined ubiquitin core and a bipartite UIM helix. Moreover, we have studied the plasticity of the docking interface, as well as global changes in ubiquitin due to UIM binding at the picoseconds-to-nanoseconds and microseconds-to-milliseconds protein motions by nuclear magnetic resonance relaxation. Changes in generalized-order parameters of amide groups show a distinct trend towards increased structural rigidity at the UIM-ubiquitin interface relative to values determined in unbound ubiquitin. Analysis of 15N Carr-Purcell-Meiboom-Gill relaxation dispersion measurements suggests the presence of two types of motions: one directly related to the UIM-binding interface and the other induced to distal parts of the protein. This study demonstrates a case where localized interactions among protein domains have global effects on protein motions at timescales ranging from picoseconds to milliseconds. 相似文献
7.
8.
Simian immunodeficiency virus (SIV), like its human homologues (HIV-1, HIV-2), requires a -1 translational frameshift event to properly synthesize all of the proteins required for viral replication. The frameshift mechanism is dependent upon a seven-nucleotide slippery sequence and a downstream RNA structure. In SIV, the downstream RNA structure has been proposed to be either a stem-loop or a pseudoknot. Here, we report the functional, structural and thermodynamic characterization of the SIV frameshift site RNA. Translational frameshift assays indicate that a stem-loop structure is sufficient to promote efficient frameshifting in vitro. NMR and thermodynamic studies of SIV RNA constructs of varying length further support the absence of any pseudoknot interaction and indicate the presence of a stable stem-loop structure. We determined the structure of the SIV frameshift-inducing RNA by NMR. The structure reveals a highly ordered 12 nucleotide loop containing a sheared G-A pair, cross-strand adenine stacking, two G-C base-pairs, and a novel CCC triloop turn. The loop structure and its high thermostability preclude pseudoknot formation. Sequence conservation and modeling studies suggest that HIV-2 RNA forms the same structure. We conclude that, like the main sub-groups of HIV-1, SIV and HIV-2 utilize stable stem-loop structures to function as a thermodynamic barrier to translation, thereby inducing ribosomal pausing and frameshifting. 相似文献
9.
Eukaryotic members of the ClC family of chloride channels and transporters are composed of a transmembrane ion transport domain followed by a cytoplasmic domain, which is believed to be involved in the modulation of ClC function. In some family members this putative regulatory domain contains next to a well-folded structured part, long sequence stretches with low sequence complexity. These regions, a 96 residue long linker connecting two structured sub-domains, and 35 residues on the C teminus of the domain were found disordered in a recent crystal structure of this domain in ClC-0. Both regions have a large influence on the modulation of channel function in closely related family members. Here we describe a NMR study to characterize the structural and dynamic properties of these putatively unstructured stretches. Our study reveals that the two regions indeed show large conformational flexibility with dynamics on the nanosecond timescale. However, small islands of secondary structure are found interdispersed between the unfolded regions. This study characterizes for the first time the biophysical properties of these protein segments, which may become important for the understanding of novel regulatory mechanisms within the ClC family. 相似文献
10.
Veldkamp CT Seibert C Peterson FC Sakmar TP Volkman BF 《Journal of molecular biology》2006,359(5):1400-1409
Tyrosine sulfation of the chemokine receptor CXCR4 enhances its interaction with the chemokine SDF-1alpha. Given similar post-translational modification of other receptors, including CCR5, CX3CR1 and CCR2b, tyrosine sulfation may be of universal importance in chemokine signaling. N-terminal domains from seven transmembrane chemokine receptors have been employed for structural studies of chemokine-receptor interactions, but never in the context of proper post-translational modifications known to affect function. A CXCR4 peptide modified at position 21 by expressed tyrosylprotein sulfotransferase-1 and unmodified peptide are both disordered in solution, but bind SDF-1alpha with low micromolar affinities. NMR and fluorescence polarization measurements showed that the CXCR4 peptide stabilizes dimeric SDF-1alpha, and that sulfotyrosine 21 binds a specific site on the chemokine that includes arginine 47. We conclude that the SDF-1alpha dimer preferentially interacts with receptor peptide, and residues beyond the extreme N-terminal region of CXCR4, including sulfotyrosine 21, make specific contacts with the chemokine ligand. 相似文献
11.
12.
Calpains are ubiquitous intracellular calcium- and thiol-dependent proteases. Their over activation, resulting in the degradation of various substrates, has been implicated in a number of cardiovascular and neurological disorders. Here, we present the first structural characterization of LSEAL penta-peptide, a potent calpain inhibitor, bound to the calmodulin-like domain of calpain. Our in vitro binding data supports the idea that domains other than calpain’s active site may be suitable targets for future development of therapeutic agents to be used to treat heart attack, traumatic brain injuries or a variety of neurodegenerative conditions, such as ischemic stroke. 相似文献
13.
Cort JR Selan U Schulte A Grimm F Kennedy MA Dahl C 《Journal of molecular biology》2008,382(3):692-707
Sequenced genomes of dissimilatory sulfur-oxidizing and sulfate-reducing bacteria containing genes coding for DsrAB, the enzyme dissimilatory sulfite reductase, inevitably also contain the gene coding for the 12-kDa DsrC protein. DsrC is thought to have a yet unidentified role associated with the activity of DsrAB. Here we report the solution structure of DsrC from the sulfur-oxidizing purple sulfur bacterium Allochromatium vinosum determined with NMR spectroscopy in reducing conditions, and we describe the redox behavior of two conserved cysteine residues upon transfer to an oxidizing environment. In reducing conditions, the DsrC structure is disordered in the highly conserved carboxy-terminus. We present multiple lines of evidence that, in oxidizing conditions, a strictly conserved cysteine (Cys111) at the penultimate position in the sequence forms an intramolecular disulfide bond with Cys100, which is conserved in DsrC in all organisms with DsrAB. While an intermolecular Cys111-Cys111 disulfide-bonded dimer is rapidly formed under oxidizing conditions, the intramolecularly disulfide-bonded species (Cys100-Cys111) is the thermodynamically stable form of the protein under these conditions. Treatment of the disulfidic forms with reducing agent regenerates the monomeric species that was structurally characterized. Using a band-shift technique under nondenaturing conditions, we obtained evidence for the interaction of DsrC with heterohexameric DsrEFH, a protein encoded in the same operon. Mutation of Cys100 to serine prevented formation of the DsrC species assigned as an intramolecular disulfide in oxidizing conditions, while still allowing formation of the intermolecular Cys111-Cys111 dimer. In the reduced form, this mutant protein still interacted with DsrEFH. This was not the case for the Cys111Ser and Cys100Ser/Cys111Ser mutants, both of which also did not form protein dimers. Our observations highlight the central importance of the carboxy-terminal DsrC cysteine residues and are consistent with a role as a sulfur-substrate binding/transferring protein, as well as with an electron-transfer function via thiol-disulfide interchanges. 相似文献
14.
Nathan T. Wright Paul T. Wilder Kristen M. Varney David J. Weber 《Journal of molecular biology》2009,386(5):1265-40183
As is typical for S100-target protein interactions, a Ca2+-dependent conformational change in S100A1 is required to bind to a 12-residue peptide (TRTK12) derived from the actin-capping protein CapZ. In addition, the Ca2+-binding affinity of S100A1 is found to be tightened (greater than threefold) when TRTK12 is bound. To examine the biophysical basis for these observations, we determined the solution NMR structure of TRTK12 in a complex with Ca2+-loaded S100A1. When bound to S100A1, TRTK12 forms an amphipathic helix (residues N6 to S12) with several favorable hydrophobic interactions observed between W7, I10, and L11 of the peptide and a well-defined hydrophobic binding pocket in S100A1 that is only present in the Ca2+-bound state. Next, the structure of S100A1-TRTK12 was compared to that of another S100A1-target complex (i.e., S100A1-RyRP12), which illustrated how the binding pocket in Ca2+-S100A1 can accommodate peptide targets with varying amino acid sequences. Similarities and differences were observed when the structures of S100A1-TRTK12 and S100B-TRTK12 were compared, providing insights regarding how more than one S100 protein can interact with the same peptide target. Such comparisons, including those with other S100-target and S100-drug complexes, provide the basis for designing novel small-molecule inhibitors that could be specific for blocking one or more S100-target protein interactions. 相似文献
15.
Graham D. Balkwill 《Journal of molecular biology》2009,385(5):1600-14279
We describe the NMR structural characterisation of a bimolecular anti-parallel DNA quadruplex d(G3ACGTAGTG3)2 containing an autonomously stable mini-hairpin motif inserted within the diagonal loop. A folding topology is identified that is different from that observed for the analogous d(G3T4G3)2 dimer with the two structures differing in the relative orientation of the diagonal loops. This appears to reflect specific base stacking interactions at the quadruplex-duplex interface that are not present in the structure with the T4-loop sequence. A truncated version of the bimolecular quadruplex d(G2ACGTAGTG2)2, with only two core G-tetrads, is less stable and forms a heterogeneous mixture of three 2-fold symmetric quadruplexes with different loop arrangements. We demonstrate that the nature of the loop sequence, its ability to form autonomously stable structure, the relative stabilities of the hairpin loop and core quadruplex, and the ability to form favourable stacking interactions between these two motifs are important factors in controlling DNA G-quadruplex topology. 相似文献
16.
A thermally unfolded disulfide-deficient mutant of the starch-binding domain of glucoamylase refolds into a kinetically trapped metastable intermediate when subjected to a rapid lowering of temperature. We attempted to characterise this intermediate using multidimensional NMR spectroscopy. The 1H-15N heteronuclear single quantum coherence spectrum after a rapid temperature decrease (the spectrum of the intermediate) showed good chemical shift dispersion but was significantly different from that of the native state, suggesting that the intermediate adopts a nonnative but well-structured conformation. Large chemical shift changes for the backbone amide protons between the native and the intermediate states were observed for residues in the β-sheet consisting of strands 2, 3, 5, 6, and 7 as well as in the C-terminal region. These residues were found to be in close proximity to aromatic residues, suggesting that the chemical shift changes are mainly due to ring current shifts caused by the aromatic residues. The two-dimensional nuclear Overhauser enhancement (NOE) spectroscopy experiments showed that the intermediate contained substantial, native-like NOE connectivities, although there were fewer cross peaks in the spectrum of the intermediate compared with that of the native state. It was also shown that there were native-like interresidue NOEs for residues buried in the protein, whereas many of the NOE cross peaks were lost for the residues involved in a surface-exposed aromatic cluster. These results suggest that, in the intermediate, the aromatic cluster at the surface is structurally less organised, whereas the interior of the protein has relatively rigid, native-like side-chain packing. 相似文献
17.
Julija Romanuka Nikolaos Biris Hans Wienk Robert Kaptein 《Journal of molecular biology》2009,390(3):478-2077
The structures of a dimeric mutant of the Lac repressor DNA-binding domain complexed with the auxiliary operators O2 and O3 have been determined using NMR spectroscopy and compared to the structures of the previously determined Lac-O1 and Lac-nonoperator complexes. Structural analysis of the Lac-O1 and Lac-O2 complexes shows highly similar structures with very similar numbers of specific and nonspecific contacts, in agreement with similar affinities for these two operators. The left monomer of the Lac repressor in the Lac-O3 complex retains most of these specific contacts. However, in the right half-site of the O3 operator, there is a significant loss of protein-DNA contacts, explaining the low affinity of the Lac repressor for the O3 operator. The binding mode in the right half-site resembles that of the nonspecific complex. In contrast to the Lac-nonoperator DNA complex where no hinge helices are formed, the stability of the hinge helices in the weak Lac-O3 complex is the same as in the Lac-O1 and Lac-O2 complexes, as judged from the results of hydrogen/deuterium experiments. 相似文献
18.
The capsular polysaccharide from Streptococcus pneumoniae Type 15B is a component of the 23-valent polysaccharide vaccine against pneumococcal disease. We report full NMR assignments for the native and de-O-acetylated polysaccharide, and confirm that the phosphorylated substituent is glycerol-2-phosphate rather than phosphocholine, located on O-3 of the side chain beta-Galp residue. The polysaccharide is O-acetylated on the terminal alpha-Gal residue, distributed between O-2, O-3, O-4 and O-6 in a ratio of 6:12:12:55, with approximately 15% of the repeat units not O-acetylated. 相似文献
19.
Filamentous type 1 pili are responsible for attachment of uropathogenic Escherichia coli strains to host cells. They consist of a linear tip fibrillum and a helical rod formed by up to 3000 copies of the main structural pilus subunit FimA. The subunits in the pilus interact via donor strand complementation, where the incomplete, immunoglobulin-like fold of each subunit is complemented by an N-terminal donor strand of the subsequent subunit. Here, we show that folding of FimA occurs at an extremely slow rate (half-life: 1.6 h) and is catalyzed more than 400-fold by the pilus chaperone FimC. Moreover, FimA is capable of intramolecular self-complementation via its own donor strand, as evidenced by the loss of folding competence upon donor strand deletion. Folded FimA is an assembly-incompetent monomer of low thermodynamic stability (− 10.1 kJ mol− 1) that can be rescued for pilus assembly at 37 °C because FimC selectively pulls the fraction of unfolded FimA molecules from the FimA folding equilibrium and allows FimA refolding on its surface. Elongation of FimA at the C-terminus by its own donor strand generated a self-complemented variant (FimAa) with alternative folding possibilities that spontaneously adopts the more stable conformation (− 85.0 kJ mol− 1) in which the C-terminal donor strand is inserted in the opposite orientation relative to that in FimA. The solved NMR structure of FimAa revealed extensive β-sheet hydrogen bonding between the FimA pilin domain and the C-terminal donor strand and provides the basis for reconstruction of an atomic model of the pilus rod. 相似文献
20.
Shengnan Zhang Tao HuangUdayar Ilangovan Andrew P. HinckPaul F. Fitzpatrick 《Journal of molecular biology》2014
Tyrosine hydroxylase (TyrH) catalyzes the hydroxylation of tyrosine to form 3,4-dihydroxyphenylalanine in the biosynthesis of the catecholamine neurotransmitters. The activity of the enzyme is regulated by phosphorylation of serine residues in a regulatory domain and by binding of catecholamines to the active site. Available structures of TyrH lack the regulatory domain, limiting the understanding of the effect of regulation on structure. We report the use of NMR spectroscopy to analyze the solution structure of the isolated regulatory domain of rat TyrH. The protein is composed of a largely unstructured N-terminal region (residues 1–71) and a well-folded C-terminal portion (residues 72–159). The structure of a truncated version of the regulatory domain containing residues 65–159 has been determined and establishes that it is an ACT domain. The isolated domain is a homodimer in solution, with the structure of each monomer very similar to that of the core of the regulatory domain of phenylalanine hydroxylase. Two TyrH regulatory domain monomers form an ACT domain dimer composed of a sheet of eight strands with four α-helices on one side of the sheet. Backbone dynamic analyses were carried out to characterize the conformational flexibility of TyrH65–159. The results provide molecular details critical for understanding the regulatory mechanism of TyrH. 相似文献