首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Using a combination of library screening and nested PCR based on a partial human serotonin 5-HT4 receptor sequence, we have cloned the complete coding region for a human 5-HT4 receptor. The sequence shows extensive similarity to the published porcine 5-HT4A and rat 5-HT4L receptor cDNA; however, in comparison with the latter, we find an open reading frame corresponding to only 388 amino acids instead of 406 amino acids. This difference is due to a frame shift caused by an additional cytosine found in the human sequence after position 1,154. Moreover, we also found the same additional cytosine in the rat 5-HT4 sequence. We confirmed the occurrence of the sequence by examining this part of the sequence in genomic DNA of 10 human volunteers and in rat genomic DNA. Based on a part of the genomic 5-HT4 receptor sequence that was identified in the cloning process, there seem to be at least two possible splice sites in the coding region of the gene. The human 5-HT4 receptor, transiently expressed in COS-7 cells, showed radioligand binding properties similar to 5-HT4 receptors in guinea pig striatal tissue. [3H]GR 113808 revealed K D values of 0.15 ± 0.01 n M for the human receptor and 0.3 ± 0.1 n M in the guinea pig tissue. Binding constants were determined for four investigated 5-HT4 antagonists and three agonists, and appropriate binding inhibition constants were found in each case. Stimulation of transfected COS-7 cells with 5-HT4-specific agonists caused an increase in cyclic AMP levels.  相似文献   

2.
In the presence of 1 microM ( +/- )-pindolol [to block 5-hydroxytryptamine (5-HT, serotonin) 5-HT 1A and 5-HT 1B receptors] and 100 nM mesulergine (to block 5-HT 1C receptors), 2.0 nM [3H]5-HT binding to rat cortical homogenates is specific, saturable, and reversible. Scatchard analysis of [3H]5-HT binding, in the presence of 1 microM ( +/- )-pindolol and 100 nM mesulergine, produced a KD of 3.2 nM and Bmax of 43 fmol/mg protein. Distribution studies show this site to be present in most rat brain regions. This site is also detectable in human caudate. The pharmacological profile of this site is distinct from the previously identified 5-HT receptor subtypes. Compounds with high affinity for 5-HT 1A (8-hydroxydipropylaminotetralin), 5-HT 1B (trifluoromethylphenylpiperazine), 5-HT 1C (mesulergine), 5-HT 2 (4-bromo-2,5-dimethoxyphenylisopropylamine), and 5-HT3 (ICS 205-930) receptors have low affinity for this site. These data suggest the presence of an additional, previously unidentified, 5-HT binding site in rat and human brain tissue. This putative novel 5-HT receptor has a similar pharmacology to the "5-HT 1D" site detected in bovine brain by Heuring and Peroutka.  相似文献   

3.
Abstract: We have examined the ligand binding site of the serotonin 5-HT6 receptor using site-directed mutagenesis. Replacing the highly conserved Asp106 in transmembrane region III by asparagine eliminated d -[3H]lysergic acid diethylamide ([3H]LSD) binding to the mutant receptor transiently expressed in HEK293 cells. The potency of 5-HT and LSD to stimulate adenylyl cyclase was reduced by 3,600- and 500-fold, respectively, suggesting that an ionic interaction between the positively charged amino group of 5-HT and D106 is essential for high-affinity binding and important for receptor activation. In addition, basal cyclic AMP levels in cells expressing this mutant were increased. Mutation of a tryptophan residue one helix turn toward the extracellular side of transmembrane region III (Trp102) to phenylalanine produced significant changes in the binding affinity and potency of several ligands, consistent with a role of this residue in the formation of the ligand binding site. The exchange of two neighboring residues in the carboxy-terminal half of transmembrane region VI (Ala287 and Asn288) for leucine and serine resulted in a mutant receptor with increased affinities (seven- to 30-fold) for sumatriptan and several ergopeptine ligands. The identification of these interactions will help to improve models of the 5-HT6 receptor ligand binding site.  相似文献   

4.
[3H]Serotonin (5-hydroxytryptamine, [3H]5-HT) was used as a radioligand probe of brain 5-HT receptors in homogenates of human cortical tissue. Two binding sites were detected in the presence of 1 microM pindolol (to block 5-HT1A and 5-HT1B receptors), and 100 nM mesulergine (to block 5-HT1C and 5-HT2 receptors). One of these sites demonstrated high affinity for 5-carboxyamidotryptamine (5-CT) and ergotamine, consistent with the known pharmacology of the 5-HT1D receptor; the second site demonstrated low affinity for 5-CT and ergotamine. Computer-assisted analyses indicated that both drugs displayed high affinities (Ki values of 1.1 nM and 0.3 nM for 5-CT and ergotamine, respectively) for 55% of the sites and low affinities (Ki values of 910 nM and 155 nM for 5-CT and ergotamine, respectively) for 45% of the sites. To investigate the non-5-HT1D component of the binding, 100 nM 5-CT (to block 5-HT1A, 5-HT1B, and 5-HT1D receptors) was coincubated with [3H]5-HT, membranes, and mesulergine. The remaining [3H]5-HT binding (hereafter referred to as "5-HT1E") displayed high affinity and saturability (KD, 5.3 nM; Bmax, 83 fmol/mg) in human cortical tissue. Competition studies with nonradioactive drugs indicated that, of the drugs tested, 5-CT and ergotamine displayed the highest selectivity for the 5-HT1D site versus the 5-HT1E site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Abstract: Previous radioligand binding studies have demonstrated human platelet serotonin2A (5-HT2A) receptor binding sites. Pharmacological similarities between platelet and frontal cortex 5-HT2A receptor binding parameters have been demonstrated. However, it is not clear whether the platelet 5-HT2A receptor primary structure is identical to that of the brain receptor. Three overlapping cDNAs were obtained to span completely the coding region of the 5-HT2A receptor. These clones were sequenced with external and internal primers. The nucleotide sequence of human platelet 5-HT2A cDNA was identical to that reported for the human frontal cortex 5-HT2A receptor, except for nucleotide 102 (T → C), which has been reported to represent a normal DNA polymorphism that does not alter the amino acid sequence. This finding may have implications in the study of neuropsychiatric disorders for which altered platelet 5-HT2A receptor binding has been demonstrated.  相似文献   

6.
Abstract: The serotonin 5-HT1A and 5-HT1B receptors are two structurally related but pharmacologically distinguishable 5-HT receptor types. In brain, the 5-HT1A receptor is localized on the soma and dendrites of neurons, whereas the 5-HT1B receptor is targeted to the axon terminals. We previously showed that these two receptors are targeted in different membrane compartments when stably expressed in the epithelial LLC-PK1 cell line. Further investigations on the mechanisms responsible for their differential targeting were done by constructing chimeras of 5-HT1A and 5-HT1B receptors still able to bind specifically [3H]lysergic acid diethylamide and selective agonists and antagonists. Their cellular localization examined by confocal microscopy suggests that the third intracellular domain of the 5-HT1B receptor was responsible for its Golgi-like localization in transfected LLC-PK1 cells. In contrast, the third intracellular domain of the 5-HT1A receptor apparently allowed the sorting of the chimeras to the plasma membrane. Further inclusion of the C-terminal domain of the 5-HT1A receptor in their sequence led to a basolateral localization, whereas that of the 5-HT1B receptor allowed an apical targeting, suggesting the existence of a targeting signal in this portion of the receptor(s).  相似文献   

7.
Activating Mutations of the Serotonin 5-HT2C Receptor   总被引:1,自引:1,他引:0  
Abstract: Site-directed mutagenesis was performed to create a mutant serotonin 5-HT2C receptor that would mimic the active conformation of the native receptor. Structural alteration of receptor conformation was achieved by changing amino acid no. 312 from serine to phenylalanine (S312F) or lysine (S312K). After expression in COS-7 cells, the binding affinity of 5-HT for [3H]-mesulergine-labeled 5-HT2C receptors increased from 203 n M (native) to 76 n M for S312F and 6.6 n M for S312K mutant receptors. 5-HT potency for stimulation of phosphatidylinositol (PI) hydrolysis increased from 70 n M (native) to 28 n M for S312F and 2.7 n M for S312K mutant receptors. The mutant receptors were constitutively active, stimulating PI hydrolysis in the absence of agonist. S312F and S312K mutations resulted in twofold and five-fold increases, respectively, in basal levels of PI hydrolysis. Mianserin and mesulergine displayed inverse agonist activity by decreasing basal levels of PI hydrolysis stimulated by S312K mutant receptors. [3H]5-HT and [3H]-mesulergine labeled the same number of S312K mutant receptors and 5'-guanylylimidodiphosphate had no effect on [3H]5-HT binding. These results indicate that serine → lysine mutation at amino acid no. 312 produces an agonist high-affinity state of the 5-HT2C receptor that spontaneously couples to G proteins and stimulates PI hydrolysis in the absence of agonist.  相似文献   

8.
Abstract: A serotonin 5-HT3 receptor was functionally expressed to high levels and on a large scale in mammalian cells with the Semliki Forest virus system. Conditions were optimized to maximize detergent solubilization of the receptor, while preserving ligand binding activity. An efficient one-step purification yielding ∼50% of the histidine-tagged 5-HT3 receptor was achieved with immobilized metal ion chromatography. The expressed receptor, in both membranes and purified preparations, exhibited wild-type ligand binding properties, characterized by one class of binding sites. The purity of the receptor was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, yielding a single band at 65 kDa, and was confirmed by the specific ligand binding activity of ∼5 nmol/mg of protein. Deglycosylation of the receptor reduced the estimated relative molecular mass to 49 kDa. The apparent molecular mass of the functional receptor complex was determined by size exclusion chromatography to be 280 kDa, suggesting that the 5-HT3 receptor is a pentameric homooligomer. The secondary structure of the 5-HT3 receptor as determined by circular dichroism appeared to consist of mainly α-helices (50%) and β-strands (24%), with minor contributions from nonregular structure (9%). The binding of either agonist or antagonist did not alter the secondary structure of the receptor.  相似文献   

9.
Radioligand binding studies were performed to characterize serotonin 5-HT1D receptors in postmortem human prefrontal cortex and caudate homogenates. [3H]5-HT binding, in the presence of pindolol (to block 5-HT1A and 5-HT1B receptors) and mesulergine (to block 5-HT1C receptors), was specific, saturable, reversible, and of high affinity. Scatchard analyses of [3H]5-HT-labeled 5-HT1D sites in human prefrontal cortex produced a KD value of 4.2 nM and Bmax of 126 fmol/mg protein. In competition experiments, 8-hydroxydipropylaminotetralin, trifluoromethylphenylpiperazine, mesulergine, 4-bromo-2,5-dimethoxyphenylisopropylamine, and ICS 205-930 had low affinity for [3H]5-HT-labeled 5-HT1D sites, indicating that the pharmacology of the 5-HT1D site is distinct from that of previously identified 5-HT1A, 5-HT1B, 5-HT1C, 5-HT2, and 5-HT3 sites. 5-HT1D sites in human brain have a similar pharmacology to the 5-HT1D sites previously identified in rat, porcine and bovine brains. Guanyl nucleotides, guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) and guanosine 5'-(beta, gamma-imido)-triphosphate (Gpp(NH)p), modulated the binding of [3H]5-HT to 5-HT1D sites, whereas adenyl nucleotides had no effect. These findings are supportive of the presence of serotonin 5-HT1D receptors in human prefrontal cortex and caudate which appear to be coupled to a GTP binding protein.  相似文献   

10.
Abstract: We investigated changes in the extracellular levels of acetylcholine (ACh) following local application of serotonergic agents to the dorsal hippocampus of freely moving rats by means of perfusion using a microdialysis technique. Perfusion of serotonin (5-HT; 10 μM, for 30 min at a rate of 3 μl/min), dissolved in Ringer's solution containing 10 μM eserine, showed no marked effect on the extracellular levels of ACh. 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 20 μM), a 5-HT1A agonist, increased ACh levels, whereas 7-trifluoromethyl-4-(4-methyl-1 -piperazinyl)-pymoto[1,2-a]quinoxaline (CGS-12066B; 100 μM), a 5-HT1B agonist, decreased it. Clomipramine (2 μM), an uptake inhibitor of 5-HT, had no effect on ACh levels. Following perfusion of 1-(2-methoxyphenyl)-4-[4- (2-phthalimido)butyl]piperazine (NAN-190; 10 μM), which is a selective 5-HT1A antagonist, the effect of 8-OH-DPAT was totally abolished, whereas CGS-12066B decreased extracellular ACh levels. 5-HT, as well as Clomipramine, had a decreasing effect on ACh levels after pretreatment with NAN-190. These results indicate that the 5-HT1A receptor, which exists in the dorsal hippocampus, enhances the spontaneous ACh release, and that the mechanism of serotonergic modulation of ACh release partly depends on both the stimulatory control via the 5-HT1A receptor and the suppressive one via the 5-HT1B receptor in the dorsal hippocampus of rats.  相似文献   

11.
Rat and human serotonin 5-HT2C receptor isoforms were evaluated for agonist-independent activation of inositol phosphate production in COS-7 cells. The nonedited isoform (5-HT(2C-INI)) displayed the greatest basal activity, stimulating inositol phosphate production fourfold over the fully edited isoform (5-HT(2C--VGV)). All of the other isoforms tested displayed intermediate levels of basal activity. Decreasing receptor expression levels by 50% produced a parallel decrease in basal activity. 5-HT stimulated inositol phosphate production twofold over basal levels through the 5-HT(2C-INI) receptor and eightfold over basal levels through the 5-HT(2C-VGV) receptor but produced similar maximal levels of inositol phosphate. 5-HT competition for [3H]mesulergine binding to 5-HT(2C-INI) best fit a two-site analysis with K(H) = 7.6 nM and K(L) = 160 nM, whereas 5-HT(2C-VGV) best fit a one-site model with Ki = 163 nM. [3H]5-HT labeled 36% of the total population of 5-HT(2C-INI) receptors labeled by [3H]mesulergine but only 12% of 5-HT(2C-VGV) receptors. [H]5-HT K(D) values increased from 5.1 nM for 5-HT(2C-INI) to 20 nM for 5-HT(2C-VGV). [3H]Mesulergine K(D) values were the same for both isoforms. 5-HT EC50 values for inositol phosphate production increased from 6.1 nM for 5-HT(2C-INI) to 30 nM for 5-HT(2C-VGV). These results demonstrate that RNA editing decreases 5-HT2C receptor basal activity, agonist affinity, and potency, indicating that RNA editing may play a role in regulating serotonergic signal transduction and response to drug therapy.  相似文献   

12.
Abstract: Serotonin 5-HT2C receptor-mediated intracellular Ca2+ mobilization was investigated in Chinese hamster ovary (CHO) cells transfected with 5-HT2C receptors. Fura-2 acetoxymethyl ester was used to investigate the regulation of 5-HT2C receptor function. CHO cells, transfected with a cDNA clone for the 5-HT2C receptor, expressed 287 fmol/mg of the receptor protein as determined by mianserin-sensitive [3H]mesulergine binding (KD = 0.49 nM). The addition of 5-HT mobilized intracellular Ca2+ in a dose-dependent fashion, ranging from a basal level of 99 ± 1.8 up to 379 ± 18 nM, with an EC50 value for 5-HT of 0.029 µM. Exposure to 5-HT, 1-(3-chlorophenyl)piperazine dihydrochloride (a 5-HT2C agonist), and 1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (a 5-HT2C and 5-HT2A agonist) resulted in increased intracellular Ca2+ levels. Mianserin, mesulergine, ritanserin, and ketanserin each blocked 5-HT-mediated intracellular Ca2+ mobilization more effectively than spiperone. The receptor was rapidly desensitized by preexposure to 5-HT in a time- and concentration-dependent manner. Mezerein and phorbol 12-myristate 13-acetate, protein kinase C activators, weakly inhibited the intracellular Ca2+ mobilization induced by 10 µM 5-HT. Furthermore, the protein kinase C inhibitor H-7 partially prevented the protein kinase C activator-induced inhibition of the 5-HT-mediated increase in intracellular Ca2+ concentration. The desensitization induced by pretreatment with 5-HT was blocked by W-7, added in conjunction with 5-HT, and partially inhibited by W-5, a nonselective inhibitor of protein kinases and weak analogue of W-7. Therefore, the 5-HT2C receptor may be connected with protein kinase C and calcium/calmodulin turnover. These results suggest that 5-HT2C receptor activation mobilizes Ca2+ in CHO cells and that the acute desensitization of the receptor may be due to calmodulin kinase-mediated feedback.  相似文献   

13.
14.
Abstract: In vivo microdialysis was used to examine the efflux of cyclic AMP (cAMP) into the extracellular fluid of the ventral hippocampus in the freely moving rat. The changes in extracellular cAMP concentration were monitored in response to forskolin and the serotonin 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). The basal level of hippocampal extracellular cAMP was 2.3 ± 0.2 pmol/ml (n = 6), after a 3-h postsur- gery stabilisation period. Perfusion of forskolin (100 μM) through the probe for 30 min significantly increased the efflux of cAMP, which returned to baseline levels within 90 min. 8-OH-DPAT (0.3 mg/kg s.c.) also significantly increased cAMP efflux, whereas a similar volume of saline had no effect. Desensitisation of the 8-OH-DPAT-induced increase in cAMP efflux was observed following a second administration of 8-OH-DPAT after a 4-h interval. Administration of 8-OH-DPAT did not alter the efflux of cAMP when forskolin was perfused through the probe. Pretreatment with WAY 100135 [N-tert-butyl 3–4-(2-methoxyphenyl)piperazine-1 -yl-2-phenylpropanamide dihydrochloride] (5 mg/kg s.c.), a specific 5-HT1A receptor antagonist, prevented the 8-OH-DPAT-induced increase in cAMP efflux. The data indicate that the 8-OH-DPAT-induced increase in cAMP efflux in vivo is mediated by a 5-HT1A receptor.  相似文献   

15.
Although the subtypes of serotonin 5-HT1 receptors have distinct structure and pharmacology, it has not been clear if they also exhibit differences in coupling to cellular signals. We have sought to compare directly the coupling of 5-HT1A and 5-HT1B receptors to adenylyl cyclase and to the mitogen-activated protein kinase ERK2 (extracellular signal-regulated kinase-2). We found that 5-HT1B receptors couple better to activation of ERK2 and inhibition of adenylyl cyclase than do 5-HT1A receptors. 5-HT stimulated a maximal fourfold increase in ERK2 activity in nontransfected cells that express endogenous 5-HT1B receptors at a very low density and a maximal 13-fold increase in transfected cells expressing 230 fmol of 5-HT1B receptor/mg of membrane protein. In contrast, activation of 5-HT1A receptors stimulated only a 2.8-fold maximal activation of ERK2 in transfected cells expressing receptors at 300 fmol/mg of membrane protein but did stimulate a 12-fold increase in activity in cells expressing receptors at 3,000 fmol/mg of membrane protein. Similarly, 5-HT1A, but not 5-HT1B, receptors were found to cause significant inhibition of forskolin-stimulated cyclic AMP accumulation only when expressed at high densities. These findings demonstrate that although both 5-HT1A and 5-HT1B receptors have been shown to couple to G proteins of the Gi class, they exhibit differences in coupling to ERK2 and adenylyl cyclase.  相似文献   

16.
Abstract: 3-(1,2,5,6-Tetrahydro-4-pyridyl)-5- n -propoxyindole (CP-96,501) was found to be a more selective ligand at the serotonin 5-HT1B receptor than the commonly used 5-HT1B agonist, 3-(1,2,5,6-tetrahydro-4-pyridyl)-5-methoxyindole (RU 24969). In rat brain membranes, the tritiated derivative, [3H]CP-96,501, was found to bind with a high affinity ( K D, 0.21 n M ) to a single binding site ( n H, 1.0). The receptor density of this site ( B max, 72 fmol/mg of protein) matched that of the 5-HT1B receptor determined with [3H]5-HT. Competition curves of 16 serotonergic compounds in [3H]CP-96,501 binding also indicated a single binding site. The rank order of their binding affinities with this new radioligand showed a high degree of correlation with their affinities at the 5-HT1B receptor determined with [3H]5-HT or [125I]iodocyanopindolol. Serotonergic compounds displayed competitive inhibition of [3H]CP-96,501 binding. In the presence of 5'-guanylylimidodiphosphate [Gpp(NH)p], [3H]CP-96,501 binding was reduced, while the potency of CP-96,501 to displace [125I]iodocyanopindolol binding was also decreased. These findings are consistent with the agonist nature of CP-96,501. The results of this study suggest that [3H]CP-96,501 is a useful agonist radioligand for the 5-HT1B receptor.  相似文献   

17.
Abstract: Little is known about the coupling of serotonin 5-HT1B receptors to cellular signals other than cyclic AMP. In the present studies, the activation by 5-HT1B receptors of p70 S6 kinase and the mitogen-activated protein kinase (MAP kinase) ERK-2 was investigated. Studies were performed by using both nontransfected Chinese hamster ovary (CHO) cells, which express endogenous receptors at a very low density, and a stable transfected CHO cell line expressing 5-HT1B receptors at 230 fmol/mg of membrane protein, a density similar to that expressed in cortex. In nontransfected cells, 5-HT was found to stimulate a greater than twofold increase in MAP kinase activity with an EC50 of 20 n M . Reflecting increased density of receptors, 5-HT caused a greater than eightfold activation of ERK-2 in transfected cells with an EC50 of 2 n M . 5-HT was found to also stimulate p70 S6 kinase in both nontransfected and transfected cells. The stimulation was sixfold in both types of cells, but the EC50 for 5-HT was fourfold lower in transfected cells. The coupling of 5-HT1B receptors to ERK-2 and to p70 S6 kinase was inhibited by pertussis toxin, inhibitors of phosphatidylinositol 3-kinase, and by the inhibitor of MAP kinase kinase PD098059. Activation of p70 S6 kinase, but not ERK-2, was also inhibited by rapamycin. These findings demonstrate that 5-HT1B receptors couple to ERK-2 and p70 S6 kinase through overlapping, but nonidentical, pathways.  相似文献   

18.
Abstract: Efficacies of the 5-hydroxytryptamine (serotonin) 5-HT3 receptor (5-HT3R) agonists 2-methyl-5-HT, dopamine, and m -chlorophenylbiguanide on 5-HT3R native to N1E-115 cells and on homopentameric 5-HT3R expressed in Xenopus oocytes were determined relative to that of 5-HT. Efficacies of 2-methyl-5-HT and dopamine on 5-HT3R native to differentiated N1E-115 cells are high (54 and 36%) as compared with their efficacies on homopentameric 5-HT3R-AL and 5-HT3R-As receptors expressed in oocytes (4–8%). m -Chlorophenylbiguanide does not distinguish between 5-HT3R in N1E-115 cells and in oocytes. The distinct pharmacological profile of 5-HT3R native to differentiated N1E-115 cells is conserved when poly(A)+ mRNA from these cells is expressed in oocytes. The results indicate that, apart from the known 5-HT3R subunits, N1E-115 cells express additional proteins involved in 5-HT3R function.  相似文献   

19.
Abstract: Specific binding of [3H]granisetron was examined to serotonin 5-HT3 receptors in synaptosomal membranes of rat cerebral cortex between 1 and 37°C. Displacing potencies were determined for 5-HT3 antagonists (granisetron, ondansetron, tropisetron, and d -tubocurarine) and agonists (5-hydroxytryptamine, 2-methyl-5-hydroxytryptamine, phenylbiguanide, m -chlorophenylbiguanide, and SR 57227A). Displacing potencies of the agonists decreased with decreasing temperature. In contrast, displacing potencies of all antagonists increased with decreasing temperature, whereas those of tropisetron and d -tubocurarine passed a maximum. Scatchard analysis of [3H]granisetron binding resulted in K D values lower than the IC50 values of granisetron and a decreasing number of binding sites at higher temperatures. It can be reconciled with temperature-dependent agonist and antagonist states of 5-HT3 receptors. A semiquantitative thermodynamic analysis was based on displacing potencies. The distinct patterns for the signs of entropy, enthalpy, and heat capacity changes on binding can be reconciled with ionic interactions for agonists and hydrophobic interactions for antagonists. The distinctive differences in these thermodynamic parameters exceed those for GABAA and glycine receptor-ionophore complexes.  相似文献   

20.
Abstract: The K+-evoked overflow of endogenous glutamate from cerebellar synaptosomes was inhibited by serotonin [5-hydroxytryptamine (5-HT); pD2 = 8.95], 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT; pD2 = 7.35), and sumatriptan (pD2 = 8.43). These inhibitions were prevented by the selective 5-HT1D receptor antagonist N -[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)(1,1-biphenyl)-4-carboxamide (GR-127935). The three agonists tested also inhibited the cyclic GMP (cGMP) response provoked in slices by K+ depolarization; pD2 values were 9.37 (5-HT), 9.00 (8-OH-DPAT), and 8.39 (sumatriptan). When cGMP formation was elevated by directly activating glutamate receptors with NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), the inhibition of the cGMP responses displayed the following pattern: 5-HT (pD2 values of 8.68 and 8.72 against NMDA and AMPA, respectively); 8-OH-DPAT (respective pD2 values of 9.15 and 9.00); sumatriptan (0.1 µ M ) was ineffective. The 5-HT1A receptor antagonist ( S )-(+) N-tert -butyl-3-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenylpropionamide dihydrochloride [(+)-WAY 100135] did not prevent the inhibition of glutamate release by 5-HT but blocked the inhibition by 8-OH-DPAT of the NMDA/AMPA-evoked cGMP responses. It is suggested that presynaptic 5-HT1D receptors mediate inhibition directly of glutamate release and indirectly of the cGMP responses to the released glutamate; on the other hand, activation of (postsynaptic) 5-HT1A receptors causes inhibition of the cGMP responses linked to stimulation of NMDA/AMPA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号