首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Significant advances have recently been made in the development of vectors and gene-delivery systems for gene therapy. Experiments performed over the past decade have revealed how vectors will have to be modified to make them a clinically viable treatment option. In the case of adenovirus (Ad) vectors, which have been particularly useful as gene delivery vehicles, the main drawback associated with their use is vector-mediated immunogenicity. Recent modifications of the Ad backbone have led to the development of helper-dependent (HD) Ad vectors, which are completely devoid of all viral protein-coding sequences. These modifications have significantly reduced the immunogenicity of Ad vectors and have enhanced their safety. It is expected that HD vectors will become important tools for future clinical gene therapy.  相似文献   

2.
Viral-derived particles have been widely used and described in gene therapy clinical trials. Although substantial results have been achieved, major safety issues have also arisen. For more than a decade, oligonucleotides have been seen as an alternative to gene complementation by viral vectors or DNA plasmids, either to correct the genetic defect or to silence gene expression. The development of RNA interference has strengthened the potential of this approach. Recent clinical trials have also tested the ability of aptamer molecules and decoy oligonucleotides to sequestrate pathogenic proteins. Here, we review the potential of oligonucleotides in gene therapy, outline what has already been accomplished, and consider what remains to be done.  相似文献   

3.
Telomerase-dependent gene therapy   总被引:3,自引:0,他引:3  
  相似文献   

4.
Cardiovascular diseases are a major cause of fatality, disability, and economic burden in Western civilization. Although the pharmaceutical industry has delivered a plethora of drugs for treatment of diverse cardiovascular complaints, there remain many conditions for which pharmacological regimens are either nonexistent or largely ineffective. In contrast, remarkable progress has been made in the field of vascular gene transfer in the last decade. The vast majority of studies are preclinical, although a number of high profile vascular gene therapy clinical trials are in progress. In principle, vascular gene therapy represents an unprecedented opportunity to treat a host of cardiovascular diseases in humans although many scientific, clinical, and ethical obstacles remain. Here we discuss the rapid progress in preclinical vascular gene therapy, highlight the most appropriate gene delivery vectors, and discuss the advances toward the ultimate goal of an efficient and safe gene therapy for diverse cardiovascular diseases.  相似文献   

5.
Substantial progress has been made in the past decade in treating several primary immunodeficiency disorders (PIDs) with gene therapy. Current approaches are based on ex-vivo transfer of therapeutic transgene via viral vectors to patient-derived autologous hematopoietic stem cells (HSCs) followed by transplantation back to the patient with or without conditioning. The overall outcome from all the clinical trials targeting different PIDs has been extremely encouraging but not without caveats. Malignant outcomes from insertional mutagenesis have featured prominently in the adverse events associated with these trials and have warranted intense pre-clinical investigation into defining the tendencies of different viral vectors for genomic integration. Coupled with issues pertaining to transgene expression, the therapeutic landscape has undergone a paradigm shift in determining safety, stability and efficacy of gene therapy approaches. In this review, we aim to summarize the progress made in the gene therapy trials targeting ADA-SCID, SCID-X1, CGD and WAS, review the pitfalls, and outline the recent advancements which are expected to further enhance favourable risk benefit ratios for gene therapeutic approaches in the future.  相似文献   

6.
Gene therapy has converged with bone engineering over the past decade, by which a variety of therapeutic genes have been delivered to stimulate bone repair. These genes can be administered via in vivo or ex vivo approach using either viral or nonviral vectors. This article reviews the fundamental aspects and recent progresses in the gene therapy-based bone engineering, with emphasis on the new genes, viral vectors and gene delivery approaches.  相似文献   

7.
Viral gene therapy has exceptional potential as a specifically tailored cancer treatment. However, enthusiasm for cancer gene therapy has varied over the years, partly owing to safety concerns after the death of a young volunteer in a clinical trial for a genetic disease. Since this singular tragedy, results from numerous clinical trials over the past 10 years have restored the excellent safety profile of adenoviral vectors. These vectors have been extensively studied in phase I and II trials as intraprostatically administered agents for patients with locally recurrent and high-risk local prostate cancer. Promising therapeutic responses have been reported in several studies with both oncolytic and suicide gene therapy strategies. The additional benefit of combining gene therapy with radiation therapy has also been realized; replicating adenoviruses inhibit DNA repair pathways, resulting in a synergistic sensitization to radiation. Other, nonreplicating suicide gene therapy strategies are also significantly enhanced with radiation. Combined radiation/gene therapy is currently being studied in phase I and II clinical trials and will likely be the first adenoviral gene therapy mechanism to become available to urologists in the clinic. Systemic gene therapy for metastatic disease is also a major goal of the field, and clinical trials are currently under way for hormone-resistant metastatic prostate cancer. Second- and third-generation "re-targeted" viral vectors, currently being developed in the laboratory, are likely to further improve these systemic trials.  相似文献   

8.
Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application.  相似文献   

9.
The eye is a small and enclosed organ which makes it an ideal target for gene therapy. Recently various strategies have been applied to gene therapy in retinopathies using non-viral and viral gene delivery to the retina and retinal pigment epithelium (RPE). Subretinal injection is the best approach to deliver viral vectors directly to RPE cells. Before the clinical trial of a gene therapy, it is inevitable to validate the efficacy of the therapy in animal models of various retinopathies. Thus, subretinal injection in mice becomes a fundamental technique for an ocular gene therapy. In this protocol, we provide the easy and replicable technique for subretinal injection of viral vectors to experimental mice. This technique is modified from the intravitreal injection, which is widely used technique in ophthalmology clinics. The representative results of RPE/choroid/scleral complex flat-mount will help to understand the efficacy of this technique and adjust the volume and titer of viral vectors for the extent of gene transduction.  相似文献   

10.
Gene therapy: progress and challenges.   总被引:6,自引:0,他引:6  
Gene therapy is the delivery of new genetic material into a patient's somatic cells for the treatment of disease and is made possible through the development of viral and non-viral gene transfer vectors. In the first five years of gene therapy, clinical studies failed to yield efficacy data with the vectors available at that time. The lack of consistent clinical benefit prompted the United States National Institute of Health Recombinant DNA Advisory Committee to evaluate gene therapy research and conclude that substantial improvements in gene transfer vectors were needed in the areas of vector safety and control of the level and duration of gene expression, and to increase the understanding of the biological interaction of gene transfer vectors with the host. We will describe the progress in development of gene delivery technology, focusing on improvements in vector safety, analysis of vector biodistribution and GMP manufacturing of viral and non-viral gene transfer systems over the last six years since the report. Whereas 5 years ago, investigators tested every vector for every potential disease indication, the accumulated database now enables investigators to select a single vector based upon it's known performance in a wide number of animal models and human clinical studies. We will also highlight several directions investigators have taken to improve the safety and efficacy of gene therapy vectors.  相似文献   

11.
Gene therapy has been applied to the treatment of cancer and metastatic disease for over ten years. Research in this area has utilised multiple gene therapy approaches including targeting tumour suppressor genes and oncogenes, stimulating the immune system, targeted chemotherapy, antiangiogenic strategies, and direct viral oncolysis. In recent years, gene delivery vectors have been developed that selectively target tumour cells through tumour-specific receptors, deletion of certain viral gene sequences, or incorporation of tumour-specific promoter sequences that drive gene expression. Preclinical models have produced promising results, demonstrating significant tumour regression and reduction of metastatic disease. Unfortunately, only limited responses have been observed in clinical trials. The main limitations in treating metastatic disease include poor vector transduction efficiencies and difficulties in targeting remote tumour cells with systemic vector delivery. Currently, various groups are investigating means to improve gene delivery and clinical responses by continuing to modify gene delivery vectors and by concentrating on combination gene therapy and multimodality therapy.  相似文献   

12.
Aerosol gene therapy   总被引:9,自引:0,他引:9  
Gene therapy is a novel field of medicine that holds tremendous therapeutic potential for a variety of human diseases. Targeting of therapeutic gene delivery vectors to the lungs can be beneficial for treatment of various pulmonary diseases such as lung cancer, cystic fibrosis, pulmonary hypertension, alpha-1 antitrypsin deficiency, and asthma. Inhalation therapy using formulations delivered as aerosols targets the lungs through the pulmonary airways. The instant access and the high ratio of the drug deposited within the lungs noninvasively are the major advantages of aerosol delivery over other routes of administration. Delivery of gene formulations via aerosols is a relatively new field, which is less than a decade old. However, in this short period of time significant developments in aerosol delivery systems and vectors have resulted in major advances toward potential applications for various pulmonary diseases. This article will review these advances and the potential future applications of aerosol gene therapy technology.  相似文献   

13.
Over the last few years, a large number of preclinical and clinical studies have demonstrated the potential of gene therapy applications using adeno-associated viral (AAV) vectors. Gene transfer via AAV vectors has been particularly successful for the treatment or adjunct therapy of several CNS disorders. The present review summarizes the progress on AAV gene delivery models for three different CNS disorders. In particular, we discuss advances in AAV-mediated gene transfer strategies in animal models of Parkinson's disease, Alzheimer's disease and spinal cord trauma and summarize the results from the first clinical studies using AAV systems.  相似文献   

14.
基因治疗是将可具有治疗性的基因导入病变细胞以达到治疗遗传性疾病或获得性功能缺损疾病的治疗手段,是一种极具潜力的新型治疗方法。然而基因治疗面临着一系列一陆床应用障碍,其中缺乏理想的基因输送载体是首要问题。绝大多数基因治疗方案受困缺乏安全有效的基因输送手段,载体要达到目的地发挥作用,需要克服一系列复杂的体内生物屏障,包括细胞外屏障和细胞内屏障。目前基因输送载体主要分为病毒载体和非病毒载体,其中病毒载体天然进化至可进入宿主细胞,具有输送效率高,靶向性好的特点,但存在长期安全性的缺点。非病毒载体主要包括阳离子脂质体和阳离子聚合物,由于易于制备和无免疫原性、安全性好,被认为是更有潜力的输送载体,是目前研究的重点。本文结合基因治疗输送屏障的理论基础及临床研究,对基因输送载体系统的现状进行了综述。  相似文献   

15.
In the past decade there has been an increase in the application of viral vectors in the laboratory and clinical trials of human gene therapy, retroviral and adenoviral vectors among the most used. However, the limited stability of these vectors creates problems in the design of experiments, transport, and storage. Vectors stored at -80 degrees C must be quickly shipped on dry ice, which is somewhat cumbersome. Alternatively, viral vectors can be preserved in a lyophilized form. However, loss of viral activity during lyophilization can also be a serious problem. In this report we identify novel candidate formulations containing new compatible solutes, ectoin, hydroxyectoin, and firoin, that allow better stability of retroviral and adenoviral vectors during storage. For retroviral vectors, the maximum stabilization for long-term storage was achieved through lyophilization followed by storage at -20 degrees C using a formulation of Tris buffer pH 7.2 containing firoin (0.5 M), a half-life of 340 days being obtained. Adenoviral vectors storage at -80 degrees C in solution using Tris buffer pH 8.0 with firoin was the best method for long-term storage, with a half-life exceeding 1 year.  相似文献   

16.
The majority of clinical trials for gene therapy currently employ retroviral-mediated gene delivery. This is because the life cycle of the retrovirus is well understood and can be effectively manipulated to generate vectors that can be efficiently and safely packaged. Here, we review the molecular technology behind the generation of recombinant retroviral vectors. We also highlight the problems associated with the use of these viruses as gene therapy vehicles and discuss future developments that will be necessary to maintain retroviral vectors at the forefront of gene transfer technology.  相似文献   

17.
Harnessing HIV for therapy, basic research and biotechnology   总被引:5,自引:0,他引:5  
First described about a decade ago, lentiviral vectors ('lentivectors') have emerged as potent and versatile tools of gene transfer for basic and applied research and offer exciting perspectives for the field of gene therapy. In the clinic, HIV-based vectors are showing particular promise for delivering therapeutic genes to hematopoietic stem cells (HSCs) and terminally differentiated targets in the central nervous system (CNS). Their flexible design facilitates the accommodation of sophisticated elements of control for the precise tuning of transgene expression. The delivery of small interfering RNAs (siRNAs) and genomic or cDNA libraries and the creation of transgenic animals are the most recent and exciting applications of HIV-based vectors that will help to tackle fundamental issues across wide areas of biology.  相似文献   

18.
Gene therapy is an active research area in The Netherlands and Dutch scientists involved in fundamental and clinical gene therapy research significantly contribute to the progresses made in this field. This ranges from the establishment of the 293, 911 and PER.C6 cell lines, which are used worldwide for the production of replication-defective adenoviral vectors, to the development of targeted viral vectors and T lymphocytes as well as of non-viral vectors. Several milestones have been achieved in Dutch clinical gene therapy trials, including the first treatment worldwide of patients with adenosine deaminase deficiency with genetically corrected hematopoietic stem cells in collaboration with French and British scientists. Until now, about 230 patients with various diseases have been treated with viral and non-viral gene therapy in this country. Ongoing and upcoming Dutch clinical trials focus on the translation of new developments in gene therapy research, including the restoration of genetic defects other than SCID, and the use of oncolytic adenoviruses and targeted T cells for the treatment of cancer. The growing commercial interest in Dutch clinical gene therapy is reflected by the involvement of two Dutch companies in ongoing trials as well as the participation of Dutch clinical centres in large phase III international multicenter immuno-gene therapy trials on prostate cancer sponsored by an American company. Translational gene therapy research in The Netherlands is boosted at a governmental level by the Dutch Ministry of Health via a dedicated funding programme. This paper presents an overview on milestones in Dutch basic gene therapy research as well as on past, present and future clinical gene therapy trials in The Netherlands.  相似文献   

19.
Gene therapy. Therapeutic approaches and implications   总被引:4,自引:0,他引:4  
The present article is an overview of gene therapy with an emphasis on different approaches and its implications in the clinic. Genetic interventions have been applied to the diagnosis of and therapy for an array of human diseases. The initial concept of gene therapy was focused on the treatment of genetic diseases. Subsequently, the field of gene therapy has been expanded, with a major focus on cancer. Although the results of early gene therapy-based clinical trials have been encouraging, there is a need for gene delivery vectors that feature reduced immunogenicity and improved targeting ability. The results of phases I/II clinical trials have suggested the important role of gene therapy as a versatile and powerful treatment tool, especially for human cancers. One reasonable expectation is that performing gene therapy at an earlier stage in the disease process or for minimal residual disease may be more advantageous.  相似文献   

20.
Treatment of human disease by adeno-associated viral gene transfer   总被引:6,自引:0,他引:6  
During the past decade, in vivo administration of viral gene transfer vectors for treatment of numerous human diseases has been brought from bench to bedside in the form of clinical trials, mostly aimed at establishing the safety of the protocol. In preclinical studies in animal models of human disease, adeno-associated viral (AAV) vectors have emerged as a favored gene transfer system for this approach. These vectors are derived from a replication-deficient, non-pathogenic parvovirus with a single-stranded DNA genome. Efficient gene transfer to numerous target cells and tissues has been described. AAV is particularly efficient in transduction of non-dividing cells, and the vector genome persists predominantly in episomal forms. Substantial correction, and in some instances complete cure, of genetic disease has been obtained in animal models of hemophilia, lysosomal storage disorders, retinal diseases, disorders of the central nervous system, and other diseases. Therapeutic expression often lasted for months to years. Treatments of genetic disorders, cancer, and other acquired diseases are summarized in this review. Vector development, results in animals, early clinical experience, as well as potential hurdles and challenges are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号