首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 404 毫秒
1.
Engagement of antigen receptors on immature B cells induces apoptosis, while at the mature stage, it stimulates cell activation and proliferation. The difference in B cell receptor (BCR)-mediated signaling pathways regulating death or survival of B cells is not fully understood. We aimed to characterize the pathway leading to BCR-driven apoptosis. Transitional immature B cells were obtained from the spleen of sublethally irradiated and auto-reconstituted mice. We have detected a short-lived BCR-driven activation of mitogen-activated protein kinases (ERK1/2 and p38 MAPK) and Akt/PKB in transitional immature B cells that correlated with the lack of c-Fos expression, reduced phosphorylation of Akt substrates and a susceptibility for apoptosis. Simultaneous signaling through BCR and CD40 protected immature B cells from apoptosis, however, without inducing Bcl-2 expression. The BCR-induced apoptosis of immature B cells is a result of the collapse of mitochondrial membrane potential and the subsequent activation of caspase-3.  相似文献   

2.
The B cell adaptor molecule of 32 kDa (Bam32) is an adaptor that links the B cell antigen receptor (BCR) to ERK and JNK activation and ultimately to mitogenesis. After BCR cross-linking, Bam32 is recruited to the plasma membrane and accumulates within F-actin-rich membrane ruffles. Bam32 contains one Src homology 2 and one pleckstrin homology domain and is phosphorylated at a single site, tyrosine 139. To define the function of Bam32 in membrane-proximal signaling events, we established human B cell lines overexpressing wild-type or mutant Bam32 proteins. The basal level of F-actin increased in cells expressing wild-type or myristoylated Bam32 but decreased in cells expressing either an Src homology-2 or Tyr-139 Bam32 mutant. Overexpression of wild-type Bam32 also affected BCR-induced actin remodeling, which was visualized as increases in F-actin-rich membrane ruffles. In contrast, Bam32 mutants largely blocked the BCR-induced increase in cellular F-actin. The positive and negative effects of Bam32 variants on F-actin levels were closely mirrored by their effects on the activation of the GTPase Rac1, which is known to regulate actin remodeling in lymphocytes. Bam32-deficient DT40 B cells showed decreased Rac1 activation and a failure of Rac1 to co-localize with the BCR, whereas cells overexpressing Bam32 had increased constitutive Rac1 activation. These results suggest that Bam32 regulates the cytoskeleton through Rac1. Bam32 variants also affected downstream signaling to JNK in a manner similar to that of Rac1, suggesting that the effect of Bam32 on JNK activation may be at least partially mediated through Rac1. Our results demonstrate a novel phosphorylation-dependent function of Bam32 in regulating Rac1 activation and actin remodeling.  相似文献   

3.
Recent studies argue for an important role for cholesterol in maintaining plasma membrane heterogeneity and influencing a variety of cellular processes, including signaling, adhesion, and permeability. Here, we document that tolerance-sensitive transitional immature B cells maintain significantly lower membrane unesterified cholesterol levels than mature-stage splenic B cells. In addition, the relatively low level of cholesterol in transitional immature B cells impairs compartmentalization of their B cell receptor (BCR) into cholesterol-enriched domains following BCR aggregation and reduces their ability to sustain certain aspects of BCR signaling as compared with mature B cells. These studies establish an unexpected difference in the lipid composition of peripheral transitional immature and mature B cells and point to a determining role for development-associated differences in cholesterol content for the differential responses of these B cells to BCR engagement.  相似文献   

4.
5.
Hepatitis B virus (HBV) is a causative agent for liver diseases including hepatocellular carcinoma. Understanding its interactions with cellular proteins is critical in the elucidation of the mechanisms of disease progression. Using a cell-based HBV replication system, we showed that HBV replication in HepG2 cells resulted in a cellular morphological changes displaying membrane rufflings and lamellipodia like structures reminiscent of cells expressing constitutively activated Rac1. We also showed that activated Rac1 resulted in increased viral replication. HBV replication specifically activated wild type Rac1, but not Cdc42. The Rac1 activation by HBV replication also resulted in the phosphorylation of ERK1/2 and AKT, the downstream targets of Rac1 signaling cascade. The smallest HBV viral protein, HBX, was able to activate the endogenous Rac1 and induce membrane ruffling when transfected into cells. Significantly, HBX was found to directly interact with a Rac1 nucleotide exchange factor (betaPIX) through a SH3 binding motif. Taken together, we have shown the interaction of HBV with the Rho GTPase, affecting cell morphology through the Rac1 activation pathway. HBV may possibly make use of an activated Rac1 signaling pathway for increased replication and resultant metastatic effects.  相似文献   

6.
7.
Abassi YA  Vuori K 《The EMBO journal》2002,21(17):4571-4582
The adaptor protein CrkII plays a central role in signal transduction cascades downstream of a number of different stimuli. We and others have previously shown that CrkII mediates attachment-induced JNK activation, membrane ruffling and cell motility in a Rac-dependent manner. We report here that cell attachment leads to tyrosine phosphorylation of CrkII on Y221, and that CrkII-Y221F mutant demonstrates enhanced association with the Crk-binding partners C3G and paxillin. Despite this enhanced signaling complex formation, CrkII-Y221F fails to induce JNK and PAK activation, membrane ruffling and cell migration, suggesting that it is defective in activating Rac signaling. Wild-type CrkII has no effect on adhesion-induced GTP loading of Rac, but its expression results in enhanced membrane localization of Rac, which is known to be required for Rac signaling. In contrast, CrkII-Y221F is deficient in enhancing membrane localization of Rac. Mutations in Rac and CrkII-Y221F that force membrane targeting of these molecules restore Rac signaling in adherent cells. Together, these results indicate that the Y221 site in CrkII regulates Rac membrane translocation upon cell adhesion, which is necessary for activation of downstream Rac signaling pathways.  相似文献   

8.
The cAMP-response element-binding protein (CREB) is activated by phosphorylation on Ser-133 and plays a key role in the proliferative and survival responses of mature B cells to B cell receptor (BCR) signaling. The signal link between the BCR and CREB activation depends on a phorbol ester (phorbol 12-myristate 13-acetate)-sensitive protein kinase C (PKC) activity and not protein kinase A or calmodulin kinase; however, the identity and role of the PKC(s) activity has not been elucidated. We found the novel PKCdelta (nPKCdelta) activator bistratene A is sufficient to induce CREB phosphorylation in murine splenic B cells. The pharmacological inhibitor G?6976, which targets conventional PKCs and PKCmu, has no effect on CREB phosphorylation, whereas the nPKCdelta inhibitor rottlerin blocks CREB phosphorylation following BCR cross-linking. Bryostatin 1 selectively prevents nPKCdelta depletion by phorbol 12-myristate 13-acetate when coapplied, coincident with protection of BCR-induced CREB phosphorylation. Ectopic expression of a kinase-inactive nPKCdelta blocks BCR-induced CREB phosphorylation in A20 B cells. In addition, BCR-induced CREB phosphorylation is significantly diminished in nPKCdelta-deficient splenic B cells in comparison with wild type mice. Consistent with the essential role for Bruton's tyrosine kinase and phospholipase Cgamma2 in mediating PKC activation, Bruton's tyrosine kinase- and phospholipase Cgamma2-deficient B cells display defective CREB phosphorylation by the BCR. We also found that p90 RSK directly phosphorylates CREB on Ser-133 following BCR cross-linking and is positioned downstream of nPKCdelta. Taken together, these results suggest a model in which BCR engagement leads to the phosphorylation of CREB via a signaling pathway that requires nPKCdelta and p90 RSK in mature B cells.  相似文献   

9.
Signals transduced through the B cell Ag receptor (BCR) drive B cell development. However, BCR-induced responses are developmentally regulated; immature B cells are tolerized following antigenic exposure while mature B cells are triggered to proliferate and differentiate. This differential responsiveness allows for the negative selection of self-reactive immature B cells while simultaneously allowing for clonal expansion of mature B cells in response to foreign Ags. Intrinsic differences in BCR-induced signal transduction at various stages of development may account for this functional dichotomy. We had previously demonstrated that the BCR-induced proliferation of mature B cells is accompanied by an increase in intracellular calcium levels and polyphosphoinositide bis phosphate (PIP2) hydrolysis. In contrast, immature B cells that undergo BCR-induced apoptosis increase intracellular calcium in the relative absence of PIP2 hydrolysis. Since PIP2 hydrolysis leads to the generation of diacylglycerol, a cofactor for protein kinase C (PKC) activation, these data suggested that an "imbalance" in BCR-induced signal transduction resulting from a relative inability to activate PKC may play a role in the susceptibility of immature B cells to BCR-induced apoptosis. In support of this hypothesis, we demonstrate that PKC activation can rescue immature B cells from BCR-induced apoptosis. Furthermore, the susceptibility of immature B cells to BCR-induced apoptosis is recapitulated in mature B cells that are either PKC depleted or are stimulated in the presence of PKC inhibitors, suggesting that an uncoupling of PKC activation from BCR-induced signaling is responsible for the apoptotic response of immature B cells.  相似文献   

10.
The serine/threonine kinase Mirk/dyrk1B is activated in several solid tumors where it mediates cell survival, but the mechanism by which Mirk is activated in tumors is unknown. We now demonstrate that Mirk is activated as a kinase by signaling from Rac1 to the mitogen-activated protein kinase kinase MKK3. Rac is a Ras superfamily GTPase that, when activated, functions downstream of Ras oncoproteins to promote cell survival, transformation, and membrane ruffling. The constitutively active mutant Rac1QL activated Mirk in several cell types through MKK3, which in turn activated Mirk by phosphorylation. Dominant negative Rac1, dominant negative MKK3, and knockdown of MKK3 by RNA interference inhibited the kinase activity of co-expressed Mirk. E-cadherin ligation in confluent Madin-Darby canine kidney (MDCK) epithelial cells is known to transiently activate Rac1. Mirk was activated by endogenous Rac1 following E-cadherin ligation in confluent MDCK epithelial cells, whereas treatment of confluent MDCK cells with an Rac1 inhibitor decreased Mirk activity. Disruption of cadherin ligation by EGTA or prevention of cadherin ligation by maintenance of cells at subconfluent density blocked activation of Mirk. Engagement of cadherin molecules on subconfluent cells by an E-cadherin/Fc chimeric molecule transiently activated both Rac1 and Mirk with a similar time course. Rac activity is up-regulated in many human tumors and mediates survival signals, which enable tumor cells to evade apoptosis. This study characterizes a new anti-apoptotic signaling pathway that connects Rac1 with a novel downstream effector, Mirk kinase, which has recently been demonstrated to mediate survival in human tumors.  相似文献   

11.
The Rac exchange factor Tiam1 is involved in diverse cell functions and signaling pathways through multiple protein interactions, raising the question of how signaling and functional specificity are achieved. We have shown that Tiam1 interactions with different scaffold proteins activate different Rac-dependent pathways by recruiting specific Rac effector proteins, and reasoned that there must be regulatory mechanisms governing each interaction. Fibroblasts express at least two Tiam1-interacting proteins, insulin receptor substrate protein 53 kDa (IRSp53) and spinophilin. We used fluorescent resonance energy transfer (FRET) to measure localized Rac activation associated with IRSp53 and spinophilin complexes in individual fibroblasts to test this hypothesis. Pervanadate or platelet-derived growth factor induced localized Rac activation dependent on Tiam1 and IRSp53. Forskolin or epinephrine induced localized Rac activation dependent on Tiam1 and spinophilin. In spinophilin-deficient cells, Tiam1 co-localized with IRSp53 in response to pervanadate or platelet-derived growth factor. In IRSp53-deficient cells, Tiam1 co-localized with spinophilin in response to forskolin or epinephrine. Total cellular levels of activated Rac were affected only in cells with exogenous Tiam1, and were primarily increased in the membrane fraction. Downstream effects of Rac activation were also stimulus and scaffold-specific. Cell ruffling, spreading, and cell adhesion were dependent on IRSp53, but not spinophilin. Epinephrine decreased IRSp53-dependent adhesion and increased cell migration in a Rac and spinophilin-dependent fashion. These results support the idea that Tiam1 interactions with different scaffold proteins couple distinct upstream signals to localized Rac activation and specific downstream pathways, and suggest that manipulating Tiam1-scaffold interactions can modulate Rac-dependent cellular behaviors.  相似文献   

12.
13.
The B lymphocyte adaptor molecule of 32 kDa (Bam32) is an adaptor that plays an indispensable role in BCR signaling. In this study, we found that upon BCR ligation, Bam32 is recruited to the plasma membrane where it associates with BCR complexes and redistributes and internalizes with BCRs. BCR ligation induced colocalization of Bam32 with lipid rafts, clathrin, and actin filaments. An inhibitor of Src family protein tyrosine kinases (PTKs) blocked both BCR-induced tyrosine phosphorylation of Bam32 and BCR internalization. Moreover, BCR internalization is impaired in Bam32-/- and Lyn-/- cells, and expression of Bam32 with a mutation of its tyrosine phosphorylation site (Y139F) inhibited BCR internalization. These data suggest that Bam32 functions downstream of Src family PTKs to regulate BCR internalization. Bam32 deficiency does not affect tyrosine phosphorylation of clathrin or the association of clathrin with lipid rafts upon BCR cross-linking. However, BCR-induced actin polymerization is impaired in Bam32-/- cells. Collectively, these findings indicate a novel role of Bam32 in connecting Src family PTKs to BCR internalization by an actin-dependent mechanism.  相似文献   

14.
The molecular basis of B cell receptor (BCR)-induced apoptosis during the negative selection of immature B cells is largely unknown. We use transitional immature B cells that are highly susceptible to BCR-induced apoptosis to show that Pten is selectively required for BCR-mediated initiation of the mitochondrial death pathway. Specifically, deleting Pten, but not other pro-apoptotic molecules, abrogates BCR-elicited apoptosis and improves viability in wild-type immature B cells. We further identify a physiologically and significantly higher intracellular Pten level in immature B cells, as compared to mature B cells, which is responsible for low AKT activity and the propensity towards death in immature B cells. Restoration of AKT activity using a constitutive form of AKT or reduction of Pten to a level comparable with that seen in mature B cells rescues immature B cells from BCR-induced apoptosis. Thus, we provide evidence that Pten is an essential mediator of BCR-induced cell death, and that differential regulation of intracellular Pten levels determines whether BCR ligation promotes cell death or survival. Our findings provide a valuable insight into the mechanisms underlying negative selection and clonal deletion of immature B cells.  相似文献   

15.
Prostaglandin E2 (PGE2) is emerging as an important co-modulator of B cell responses. Using a pharmacological approach, we aimed to delineate the role of PGE2 in B cell receptor (BCR) induced apoptosis of immature B cells. Gene and protein expression analyses showed that, of the four PGE2 receptors subtypes, only EP4 receptor is upregulated upon BCR cross-linking, leading to sensitization of WEHI 231 cells towards PGE2 mediated inhibitory effects. EP4 receptor antagonist ONO-AE3-208, was able to completely revert the observed effects of PGE2. The engagement of EP4 receptor promotes BCR-induced G0/G1 arrest of WEHI 231 cells, resulting in enhanced caspase mediated, BCR-induced apoptosis. We addressed, mechanistically, the interplay between BCR and EP4 receptor signaling components. Prostaglandin1-alcohol (Pge1-OH), a selective EP4 receptor agonist inhibits BCR-induced activation of NF-κB by suppression of BCR-induced IκBα phosphorylation. Disruption of prosurvival pathways is a possible mechanism by which PGE2 enhances BCR-induced apoptosis in immature B lymphocytes.  相似文献   

16.
BACKGROUND: Dendritic cells use constitutive macropinocytosis to capture exogenous antigens for presentation on MHC molecules. Upon exposure to inflammatory stimuli or bacterial products such as lipopolysaccharide (LPS), macropinocytosis is dramatically downregulated as part of a developmental programme leading to dendritic cell maturation, migration and activation of T cells. It is not known, however, how macropinocytosis is sustained in dendritic cells in the absence of exogenous stimuli, nor how it is downregulated upon maturation. We have tested the possibility that one or more members of the Rho family of GTPases are involved in and control pinocytosis in dendritic cells. RESULTS: We established dendritic cell populations that show constitutive macropinocytosis that was downregulated by LPS treatment. Microinjection of immature cells with dominant-negative Rac (N17Rac1) or treatment with Clostridium difficile toxin B, the phosphoinositide 3-kinase (PI3-K) inhibitor wortmannin, or LPS all inhibited the formation of macropinosomes but, surprisingly, did not eliminate membrane ruffling. Microinjection of N17Cdc42 or the Rho inhibitor C3 transferase eliminated actin plaques/podosomes and actin cables, respectively, but had little effect on the formation of macropinosomes. Surprisingly, dendritic cells matured with LPS had equivalent or even somewhat higher levels of active Rac than immature cells. Moreover, microinjection of a constitutively active form of Rac (V12Rac1) into mature dendritic cells did not reactivate macropinocytosis. CONCLUSIONS: Rac has an important role in the constitutive formation of macropinosomes in dendritic cells but may be required downstream of membrane ruffling. Furthermore, regulation of Rac activity does not appear to be the control point in the physiological downregulation of dendritic cell pinocytosis. Instead, one or more downstream effectors may be modulated to allow Rac to continue to regulate other cellular functions.  相似文献   

17.
The Rho family of GTPases plays a major role in the organization of the actin cytoskeleton. These G proteins are activated by guanine nucleotide exchange factors that stimulate the exchange of bound GDP for GTP. In their GTP-bound state, these G proteins interact with downstream effectors. Vav2 is an exchange factor for Rho family GTPases. It is a ubiquitously expressed homologue of Vav1, and like Vav1, it has previously been shown to be activated by tyrosine phosphorylation. Because Vav1 becomes tyrosine phosphorylated and activated following integrin engagement in hematopoietic cells, we investigated the tyrosine phosphorylation of Vav2 in response to integrin-mediated adhesion in fibroblasts and epithelial cells. However, no tyrosine phosphorylation of Vav2 was detected in response to integrin engagement. In contrast, treating cells with either epidermal growth factor or platelet-derived growth factor stimulated tyrosine phosphorylation of Vav2. We have examined the effects of overexpressing either wild-type or amino-terminally truncated (constitutively active) forms of Vav2 as fusion proteins with green fluorescent protein. Overexpression of either wild-type or constitutively active Vav2 resulted in prominent membrane ruffles and enhanced stress fibers. These cells revealed elevated rates of cell migration that were inhibited by expression of dominant negative forms of Rac1 and Cdc42. Using a binding assay to measure the activity of Rac1, Cdc42, and RhoA, we found that overexpression of Vav2 resulted in increased activity of each of these G proteins. Expression of a carboxy-terminal fragment of Vav2 decreased the elevation of Rac1 activity induced by epidermal growth factor, consistent with Vav2 mediating activation of Rac1 downstream from growth factor receptors.  相似文献   

18.
Vascular endothelial growth factor (VEGF) signaling is critical for both normal and disease-associated vascular development. Dysregulated VEGF signaling has been implicated in ischemic stroke, tumor angiogenesis, and many other vascular diseases. VEGF signals through several effectors, including the Rho family of small GTPases. As a member of this family, Rac1 promotes VEGF-induced endothelial cell migration by stimulating the formation of lamellipodia and membrane ruffles. To form these membrane protrusions, Rac1 is activated by guanine nucleotide exchange factors (GEFs) that catalyze the exchange of GDP for GTP. The goal of this study was to identify the GEF responsible for activating Rac1 in response to VEGF stimulation. We have found that VEGF stimulates biphasic activation of Rac1 and for these studies we focused on the peak of activation that occurs at 30 min. Inhibition of VEGFR-2 signaling blocks VEGF-induced Rac1 activation. Using a Rac1 nucleotide-free mutant (G15ARac1), which has a high affinity for binding activated GEFs, we show that the Rac GEF Vav2 associates with G15ARac1 after VEGF stimulation. Additionally, we show that depleting endothelial cells of endogenous Vav2 with siRNA prevents VEGF-induced Rac1 activation. Moreover, Vav2 is tyrosine phosphorylated upon VEGF treatment, which temporally correlates with Rac1 activation and requires VEGFR-2 signaling and Src kinase activity. Finally, we show that depressing Vav2 expression by siRNA impairs VEGF-induced endothelial cell migration. Taken together, our results provide evidence that Vav2 acts downstream of VEGF to activate Rac1.  相似文献   

19.

Background

Vav proteins are guanine nucleotide exchange factors (GEF) for Rho family GTPases and are activated following engagement of membrane receptors. Overexpression of Vav proteins enhances lamellipodium and ruffle formation, migration, and cell spreading, and augments activation of many downstream signaling proteins like Rac, ERK and Akt. Vav proteins are composed of multiple structural domains that mediate their GEF function and binding interactions with many cellular proteins. In this report we examine the mechanisms responsible for stimulation of cell migration by an activated variant of Vav1 and identify the domains of Vav1 required for this activity.

Results

We found that expression of an active form of Vav1, Vav1Y3F, in MCF-10A mammary epithelial cells increases cell migration in the absence or presence of EGF. Vav1Y3F was also able to drive Rac1 activation and PAK and ERK phosphorylation in MCF-10A cells in the absence of EGF stimulation. Mutations in the Dbl homology, pleckstrin homology, or cysteine-rich domains of Vav1Y3F abolished Rac1 or ERK activation in the absence of EGF and blocked the migration-promoting activity of Vav1Y3F. In contrast, mutations in the SH2 and C-SH3 domains did not affect Rac activation by Vav1Y3F, but reduced the ability of Vav1Y3F to induce EGF-independent migration and constitutive ERK phosphorylation. EGF-independent migration of MCF-10A cells expressing Vav1Y3F was abolished by treatment of cells with an antibody that prevents ligand binding to the EGF receptor. In addition, conditioned media collected from Vav1Y3F expressing cells stimulated migration of parental MCF-10A cells. Lastly, treatment of cells with the EGF receptor inhibitory antibody blocked the Vav1Y3F-induced, EGF-independent stimulation of ERK phosphorylation, but had no effect on Rac1 activation or PAK phosphorylation.

Conclusion

Our results indicate that increased migration of active Vav1 expressing cells is dependent on Vav1 GEF activity and secretion of an EGF receptor ligand. In addition, activation of ERK downstream of Vav1 is dependent on autocrine EGF receptor stimulation while active Vav1 can stimulate Rac1 and PAK activation independent of ligand binding to the EGF receptor. Thus, stimulation of migration by activated Vav1 involves both EGF receptor-dependent and independent activities induced through the Rho GEF domain of Vav1.  相似文献   

20.
The proto-oncogene c-Src has been implicated in the development and progression of a number of human cancers including those of colon and breast. Accumulating evidence indicates that activated alleles of Src may induce cell transformation through Ras-ERK-dependent and -independent pathways. Here we show that Rac1 activity is strongly elevated in Src-transformed cells and that this small G protein is a critical component of the pathway connecting oncogenic Src with cell transformation. We further show that Vav2 and the ubiquitously expressed Rac1 guanine nucleotide exchange factor Tiam1 are phosphorylated in tyrosine residues in cells transfected with active and oncogenic Src. Moreover, phosphorylation of Tiam1 in cells treated with pervanadate, a potent inhibitor of tyrosine phosphatases, was partially inhibited by the Src inhibitor SU6656. Using truncated mutants of Tiam1, we demonstrate that multiple sites can be tyrosine-phosphorylated by Src. Furthermore, Tiam1 cooperated with Src to induce activation of Rac1 in vivo and the formation of membrane ruffles. Similarly, activation of JNK and the c-jun promoter by Src were also potently increased by Tiam1. Together, these results suggest that Vav2 and Tiam1 may act as downstream effectors of Src, thereby regulating Rac1-dependent pathways that participate in Src-induced cell transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号