首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative importance of root system structure, plant carbon status and soil environment in the determination of lateral root diameter remains unclear, and was investigated in this study. Banana (Musa acuminata) plants were grown at various moderate levels of soil compaction in two distinct experiments, in a field experiment (FE) and in a glasshouse experiment (GE). Radiant flux density was 5 times lower in GE. The distribution of root diameter was measured for several root branching orders. Root diameters ranged between 0.09 and 0.52 mm for secondary roots and between 0.06 and 0.27 mm for tertiary roots. A relationship was found between the diameter of the parent bearing root and the median diameter of its laterals, which appears to be valid for a wide range of species. Mean lateral root diameter increased with distance to the base of the root and decreased with branching density [number of lateral roots per unit length of bearing root (cm(-1))]. Typical symptoms of low light availability were observed in GE. In this case, lateral root diameter variability was reduced. Although primary root growth was affected by soil compaction, no effects on lateral root diameter were observed.  相似文献   

2.
The objective of this work was to describe the relationship between elongation rate and diameter of maize roots and to estimate the length and growth duration of lateral roots of maize. Diameters and elongation rates of roots were measuredin situ on plants grown 5 weeks in small rhizotrons under greenhouse conditions. At the end of the experimental period the roots were harvested and diameters of axile and lateral roots were measured. The frequency distribution of diameters of harvested roots was bimodal with a minimum at 0.6 mm; 97% of axile roots were larger than this value and 98% of the lateral roots were smaller. Root elongation per day increased as diameter increased but the slope of the relationship with lateral roots was about 2.5 times that with axile roots when separate linear regressions were fitted to the two populations. The length of lateral roots found on axillary roots between the base and about 30 cm from the apex was approximately 2.2 cm. All of the data was consistent with the hypothesis that the lateral roots grew for about 2.5 days and then ceased growing. The axillary roots continued to grow throughout the experimental period at a rate of about 3 cm day−1. Contribution from the Department of Agronomy, New York State College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853. Agronomy paper No. 1661. This research is part of the program of the Center for Root-Soil Research.  相似文献   

3.
It has been proposed that the acropetal initiation of lateral roots is a built‐in process specified as part of the general process of cell division and differentiation in the parent root tip. Conversely, it is commonly reported that root branching is essentially a variable feature. In the present study, the interlateral distance along the parent root has been investigated using three banana varieties (Musa spp.) grown in two substrates. The pattern of lateral root initiation was obscured by variations of root growth patterns and vascular structure among roots, genotypes and substrates. A framework model is formulated showing the influence of growth pattern and vascular structure on branching density. The model raises a distinction between growth components which should not affect the branching density (i.e. rate of cell division) and which may affect it (i.e. size of mature cells and number of transverse divisions performed by cells executing their trajectory in the meristem). It appears also that lateral root density and root growth rate might be independently modulated by appropriate changes of root growth patterns, in banana and presumably many other taxa.  相似文献   

4.
Futsaether  Cecilia M.  Oxaal  Unni 《Plant and Soil》2002,246(2):221-230
A root growth chamber is described which allows seedling root growth dynamics and structure to be monitored continuously under a variety of conditions for several weeks. The chamber consists of two cells with inner dimensions 18×20×0.12 cm. To simulate the soil matrix, each cell was filled with spherical glass beads of 0.1 cm diameter. Given the 0.12 cm width of each cell, the glass bead matrix was approximately one bead layer thick. Roots were therefore grown in a quasi -two-dimensional and transparent environment. This enabled root images of high spatial and temporal resolution to be collected and analysed quantitatively using standard image analysis techniques. The chamber was constructed such that the root environment could be manipulated with regard to nutrient distribution, `soil' matrix structure and other perturbations to the system. Preliminary experiments of the growth dynamics of lentil roots (Lens culinaris L. cv. Verte du Puy) in the chamber were conducted. The majority of the primary and lateral roots followed a similar growth pattern with high growth rates between days 5 and 9 and days 14 and 18 separated by a period of low growth rate between days 10 and 12 after seeding in the chamber. Thus, primary and lateral root growth was to a certain extent synchronized. Lateral roots developed after 3 to 8 days on the outer curve (convex side) of the primary root. The roots shared many of the characteristics of roots developed in three-dimensional systems indicating that the chamber did not induce artificial root behaviour. Thus, the idealized and quantitative studies that can be conducted in the chamber may enable many aspects of the complex interactions between the root system and environment to be studied.  相似文献   

5.
Thaler  Philippe  Pagès  Loïc 《Plant and Soil》1998,201(2):307-320
A model has been designed to simulate rubber seedling root development as related to assimilate availability. Each root of the system is defined both as an element of a network of axes, characterized by its order, position and connections and as an individual sink competing for assimilates. At each time step, the growth of each root is calculated as a function of its own growth potential and of assimilate availability calculated within the whole plant. The potential elongation rate of a root is estimated by its apical diameter, which reflects the size of the meristem. When a root is initiated, the apical diameter depends on root type, but it varies thereafter according to assimilate availability. Thus, the latter controls both current and potential elongation. The model was able to simulate periodicity in root development as related to shoot growth and to reproduce differences in sensitivity to assimilate availability related to root type. It thereby validated the hypothesis that root growth but also root system architecture depend on assimilate allocation and that apical diameter is a good indicator of root growth potential. Provided that specific calibration is done, this model may be used for other species.  相似文献   

6.
P. W. Gandar  A. J. Hall 《Planta》1988,175(1):121-129
Two methods are described for estimating position-time relationships (pathlines) in steady, one-dimensional growth zones. Pathlines can be used to provide a time base for spatial data in developmental studies. The methods apply within extension-only zones (zones of growth without cell division) and require data for cell-number densities, or cumulative cell numbers, or mean cell lengths, and for the overall elongation rate of an organ. The first method (continuous-pathline method) can be used to estimate spatial velocity fields within extension-only zones and pathlines can then be obtained by integration of the velocity data. This method is based on the continuity equation for cell-number densities. Pathlines can also be estimated using a simple graphical version of this method. The second method (pathline-coordinate method) is based on the approximation that a cell of mean length remains of mean length as it moves through the extension-only zone, and can be used to estimate the coordinates of wall pathlines at discrete intervals. The methods are illustrated using published data from studies of apical growth in Zea mays L. roots and of intercalary growth in Triticum aestivum L. leaves.  相似文献   

7.
Excision and subsequent incubation of the apices (1 cm) of wheat (Triticum aestivum L.) seedling roots in simple media severely reduced elongation from 28 mm·(24 h)-1 in intact roots to a maximum of 2 mm·(24 h)-1 in excised roots. The reduction in growth was accompanied by a loss of cell turgor in the growing zone but was correlated with a hardening of the cell walls in this region. Rheological properties were measured as percent extensibility (both plastic and elastic) using a tensiometer, and as instantaneous volumetric elastic modulus ( i) using the pressure probe. Excision decreased plastic and elastic properties with a half-time of some 60 min. Plastic extension was reduced from 2.5% to 0.9% and elastic from 4.8% to 2.6% for an 8-g load. By contrast, i was increased by excision. The observed reduction in root elongation rate was accompained by a reduction in mature cell length from 240 m to 40 m and a shortening of the zone of cell expansion.Symbol i instantaneous volumetric elastic modulus  相似文献   

8.
9.
地下水位对黄河三角洲柽柳根系生长的影响   总被引:1,自引:0,他引:1  
苏丽  董波涛  孙佳  赵西梅  吴春红  夏江宝 《生态学报》2021,41(10):3794-3804
为揭示黄河三角洲柽柳根系生长特征对地下水位的响应规律,明确柽柳生长适宜的地下水位,在咸水矿化度(6 g/L)下,模拟设置0、0.3、0.6、0.9、1.2、1.5、1.8 m共7个地下水位。测定分析栽植柽柳土柱的水盐参数与根系生长指标。结果表明:在咸水矿化度下,地下水位可显著影响土壤水盐变化,从而影响柽柳根系的生长。随地下水位的降低,土壤含水量、含盐量和土壤溶液绝对浓度显著降低。在高水位(≤0.6 m)下,柽柳根系生长受水盐胁迫影响显著,柽柳根长、根径、侧根数、总生物量、侧根生物量、根系连接长度均较低,拓扑结构呈叉状分支;中水位(0.9 m)时,土壤水盐条件适宜,柽柳侧根数、根径、二级侧根和毛细根生物量达到最大值,拓扑结构由叉状分支向鱼尾形分支过渡;低水位(≥1.2 m)下,土壤水盐含量低,柽柳根系总生物量、主根生物量、一级侧根生物量和根系平均连接长度在1.2 m水位达到最大值后降低,拓扑结构呈鱼尾形分支。柽柳根系生长与地下水位密切相关,柽柳通过改变根系生长和调整构型来适应不同土壤水盐和地下水位条件。高水位(≤0.6 m)下柽柳以降低根系生长深度,增加分叉,调配各组织器官的生物量来适应水盐胁迫;中水位0.9 m下土壤水盐条件最适宜柽柳生长;低水位(≥1.2 m)下柽柳主要受土壤干旱胁迫而使根系向下生长,增加根系连接长度,以此扩大资源获取效率。柽柳根系生长及根系构型对咸水矿化度下不同地下水位表现出较强的适应性和可塑性。  相似文献   

10.
P. E. Pilet 《Planta》1986,169(4):600-602
A large population of primary roots of Zea mays (cv. LG 11) was selected for uniform length at zero time. Their individual growth rates were measured over an 8-h period in the vertical position (in humid air, darkness). Three groups of these roots with significantly different growth rates were then chosen and their cap length was measured. It was found that slowly growing roots had long caps whereas rapidly growing roots had short caps. The production by the cap cells of basipetally transported growth inhibitors was tested (biologically by the curvature of half-decapped roots) and found to be significantly higher for longer root caps than that for shorter ones.  相似文献   

11.
刘天凤  谢川  郭松  李在留 《广西植物》2022,42(7):1240-1247
为探讨土壤石砾含量对珍稀濒危植物掌叶木幼苗生长和根系的影响,该研究以1个月生掌叶木幼苗为试验材料,进行5种不同土壤石砾含量[0(CK),20%,40%,60%和80%]盆栽试验,筛选最适宜掌叶木幼苗生长的土壤石砾含量。结果表明:(1)土壤石砾含量对掌叶木幼苗生长有极显著影响,其中幼苗苗高和地径相对增长率、叶面积、苗木质量指数、生物量(根、叶和全株)和根冠比均在土壤石砾含量为40%时最大。(2)土壤石砾含量对掌叶木幼苗根系形态具有极显著影响,总根长和根表面积在土壤石砾含量为40%时最大; 而根系平均直径随石砾含量增加逐渐减小,当土壤石砾含量高达80%时,根系平均直径最小。(3)土壤石砾含量对掌叶木幼苗根系拓扑结构和分形特征无显著影响,而对根系平均连接长度和分叉数有极显著影响,其中各处理根系拓扑指数(TI)、修正拓扑指数(qaqb)均趋近于1,即掌叶木幼苗根系在不同土壤石砾含量中分支模式更趋近于鱼尾形分支; 根系平均连接长度随石砾含量增加先增大后减小,在土壤石砾含量40%时最大; 根系分叉数随石砾含量增加逐渐减小。(4)综合评价幼苗生长和根系形态与构型指标表明,掌叶木幼苗在40%土壤石砾含量中地下根系和地上茎叶生长状况最好。因此,土壤添加适量石砾能促进掌叶木幼苗生长,当石砾含量为40%时幼苗生长效果最好,苗木质量指数最高,最适宜掌叶木幼苗生长。  相似文献   

12.
Seeds of Zea mays L., germinating in soil, were exposed to very low doses of the sulfonylurea herbicides chlorsulfuron and metsulfuron methyl. At a concentration of 0.012 mg L–1, chlorsulfuron caused 72% and metsulfuron methyl 55% growth reduction of the young primary roots. Both herbicides also caused obvious injuries to the root tips. Scanning electron microscopic observations of the root tip surfaces indicated an inhibition of slime secretion at a herbicide concentration of 1.5 mg L–1. Transmission electron microscopy revealed obvious changes to the nuclei and deformation of radial cell walls in the primary root cortex at 0.012 and 1.5 mg L–1 for both herbicides. Moreover, the secretory cells of the root cap periphery showed partially irregular deposition of premature cell wall or slime material at a concentration of 0.012 mg L–1 of both herbicides.From the results of our electron microscopic observations we conclude that the primary roots of maize seedlings are seriously affected by extremely low concentrations of even those herbicides which (as chlorsulfuron and metsulfuron methyl) have been developed to inhibit the growth of dicotyledonous weeds. Moreover, we suggest that the frequently observed growth retardation of crop seedlings is a consequence of early root tip injuries caused by herbicide residues in the soil. ei]H Lambers  相似文献   

13.
In the G2 line of peas (Pisum sativum L.), senescence of the shoot apex (which precedes leaf senescence) only occurs in long days (LD) though flowering is independent of photoperiod. It has been suggested that the photoperiodic control of senescence in G2 is mediated through different rates of seed growth. In LD seed growth is more rapid than in short days (SD) and this places a greater nutrient drain on the plant. In addition, more flowers develop into fruits in LD than in SD: 32% of flower buds abort in SD while almost none abort in LD. Senescence is associated with early seed growth and does not occur in deflowered or deseeded plants. Seed development is completed in 30d in LD while it takes 40d in SD, though the seed weights are similar. The maximum rate of fresh-weight gain of all the growing seeds of eight fruits on a plant in SD (1,440 mg/d) does not reach the maximum rate of weight gain of a similar fruit complement in LD (1,720 mg/d). The appearance of senescence symptoms in the shoot apices of LD-grown G2 plants occurs, however, prior to the time of the greatest rate of seed-weight gain. In LD, four fruits with a combined maximum growth rate of 1,250 mg/d are sufficient to cause the appearance of senescence symptoms. This is a lower combined seed growth rate than in SD where senescence does not occur. The seeds in up to 12 fruits can be growing at any time in SD with a combined maximum seed-growth rate (1,660 mg/d), only slightly less than the maximum in LD, with no sign of senescence. It is concluded that the different rates of seed growth occasioned by different photoperiods bear no relation to senescence. However, photoperiod does alter the spatial relationship of the shoot apex and the filling fruits. In LD apical growth becomes slower as fruiting proceeds so that the distance between the filling fruits and the apex is decreased to only two nodes while in SD, because of the delayed fruit development compared to LD, the spatial separation between the fruits and the shoot apex is nine nodes. Even if the growth rate of the plant had remained constant in LD it is calculated that an equivalent fruit complement would still be located three nodes further from the apex in SD than in LD. This increased spatial separation of fruits and apex in SD compared to LD probably alters the source/sink distribution of photosynthate and leaf derived hormones so that larger amounts are available to the apex in SD than LD. Also any senescence factor exported from fruits is less likely to reach the apex in SD. In continuously deflorated plants of G2 the two uppermost expanded stipules enclose the apex in SD while in LD they open out. The effect is reversible. Thus photoperiod probably affects the apex and its growth, directly, i.e. independent of fruit development, and this is accentuated by the differing spatial relationships of the apex and fruits resulting from different fruit growth rates under the different photoperiodic conditions.Abbreviations LD long day(s) - SD short day(s)  相似文献   

14.
为探求林木幼苗生物量分配和根系生长对空气断根的响应,以侧柏(Platycladus Orientalis)实生苗为材料,设置空气断根(T)和不断根(CK)处理,研究了空气断根10、30 d和50 d后对侧柏生物量、根系形态特征及吸收面积的影响。结果表明:(1)T处理的侧柏幼苗地上生物量、根生物量、总生物量、根长、根表面积、根体积及根尖数在断根10、30 d和50 d后均大于CK,且显著扩大了根系总吸收面积和活跃吸收面积。(2)空气断根显著影响了侧柏实生苗的生物量分配格局,其根冠比在整个试验阶段呈先增大后减小的趋势,而CK逐渐减小。(3)两种处理的侧柏幼苗根系直径集中在0-0.5 mm。与CK相比,T处理侧柏随空气断根时间延长,单株根系直径在0-0.5 mm的根数量急剧增多,占总根尖数的79%,根平均长度、根表面积、根体积和根尖数显著增大。(4)生物量参数和根形态参数之间关系密切。根生物量与地上生物量及总生物量呈显著正相关(P0.05)。除根系平均直径外,根生物量、地上生物量和总生物量分别与根长、根表面积、根体积、根尖数呈显著正相关,根冠比与地上生物量呈负相关。因此,空气断根有效改善了侧柏幼苗的根系形态特征,提高了吸收面积,显著促进侧柏实生苗在生长早期快速发育。  相似文献   

15.
白雪  赵成章  康满萍 《生态学报》2021,41(5):1878-1884
根系构型影响根系空间分布和营养吸收效率,反映了植物适应环境胁迫的生存策略。采用标准化主轴估计(Standardized major axis estimation,SMA)的方法,分析了甘肃金塔北海子国家湿地公园3年生和6年生多枝柽柳(Tamarix ramosissima)根系分叉数与分支角度的异速生长关系。结果表明:随着林龄的增长,湿地群落盖度、高度逐渐增加,多枝柽柳种群的盖度、密度、高度和地上生物量以及根系深度、分叉数、比根长、比表面积、各级根系直径随之增加,根系分支角度和根冠比逐渐减小;多枝柽柳根系分叉数与分支角度回归方程的标准主轴斜率逐渐增大(P<0.05),随着林龄的增长,多枝柽柳根系分叉数的增加速度逐渐大于根系分支角度的生长速度,二者在林龄间呈现出差异化的异速生长关系。随着林龄的增长,多枝柽柳根系构型模式由"扩散型"转变为"紧缩型",体现了种群应对生境胁迫和竞争的生态适应机制。  相似文献   

16.
In soybean (Glycine max (L.) Merr.) the uninfected cells of the root nodule are responsible for the final steps in ureide production from recently fixed nitrogen. Stereological methods and an original quantitative method were used to investigate the organization of these cells and their spatial relationships to infected cells in the central region of nodules of soybean inoculated with Rhizobium japonicum strain USDA 3I1B110 and grown with and without nitrogen (as nitrate) in the nutrient medium. The volume occupied by the uninfected tissue was 21% of the total volume of the central infected region for nodules of plants grown without nitrate, and 31% for nodules of plants grown with nitrate. Despite their low relative volume, the uninfected cells outnumbered the much larger infected cells in nodules of plants grown both without and with nitrate. The surface density of the interface between the ininfected and infected tissue in the infected region was similar for nodules in both cases also, the total range being from 24 to 26 mm2/mm3. In nodules of plants grown without nitrate, all sampled infected cells were found to be in contact with at least one uninfected cell. The study demonstrates that although the uninfected tissue in soybean nodules occupies a relatively small volume, it is organized so as to produce a large surface area for interaction with the infected tissue.  相似文献   

17.
Most existing water and nutrient uptake models are based on the assumption that roots are evenly distributed in the soil volume. This assumption is not realistic for field conditions, and significantly alters water or nutrient uptake calculations. Therefore, development of models of root system growth that account for the spatial distribution of roots is necessary.The objective of this work was to test a three dimensional architectural model of the maize root system by comparing simulated horizontal root maps with observed root maps obtained from the field. The model was built using the current knowledge on maize root system morphogenesis and parameters obtained under field conditions. Simulated root maps (0.45 × 0.75 m) of horizontal cross sections at 3 depths and 3 dates were obtained by using the model for a plant population. Actual root maps were obtained in a deep, barrier-free clay-loamy soil by digging pits, preparing selected horizontal planes and recording root contacts on plastic sheets.Results showed that both the number of cross-sections of axile roots, and their spatial distribution characterized with the R-index value of Clark and Evans (1954), were correctly accounted for by the model at all dates and depths. The number of cross-sections of laterals was also correctly predicted. However, laterals were more clustered around axile roots on simulated root maps than on observed root maps. Although slight discrepancies appeared between simulated and observed root maps in this respect, it was concluded that the model correctly accounted for the general colonization pattern of the soil volume by roots under a maize crop.  相似文献   

18.
Longest root elongation diminished significantly in the three species tested from 6 mm d-1 to 3 mm d-1 in 3 weeks. During this period S.D. increased considerably (from 49% to 112%, A. castellana), and accounted on the average for 68% (A. capillaris) till 94% (A. castellana) of the mean. Maximum root growth stabilized at 6 mm d-1 and showed less variation in the measurements (S.D. 52% of the mean). Growth of the originally longest root approaches zero in all three species, in accordance with the natural cease of growth of roots in grasses fascicular root system. Measuring maximum root growth instead of longest root elongation is proposed for testing metal tolerance of grasses in sequential experiments.  相似文献   

19.
The maximum axial growth pressure of roots of Lupinus albus cv Lublanc and Lupinus albus cv Lunoble (spring and autumn-sown cultivars respectively) were measured. The mean values were not significantly different with an overall mean value of 645 kPa. This value is not unusually large for plant roots and is surprising because lupins are known for their ability to penetrate strong soils. The autumn cultivar had a significantly greater maximum elongation rate under zero mechanical impedance than the spring cultivar. The impeded diameters were also larger in the autumn cultivars.  相似文献   

20.
Two hundred and forty-two actinomycete strains were isolated from the interior of leaves and roots of healthy and wilting banana plants. Most of them were streptomycetes, Streptomyces griseorubiginosus-like strains were the most frequently isolated strains. Community analysis demonstrated increased actinomycete diversity in wilting leaves compared to that in healthy leaves, similar actinomycete communities were found in wilting and healthy roots. Screening of the isolates for antagonistic activity against Fusarium oxysporumf. sp. cubenserevealed that the proportion of antagonistic streptomycetes in healthy roots was higher than that in wilting roots (P < 0.01), but no difference was found between antagonistic strains isolated from healthy and wilting leaves. The potential biological control of Panama disease of banana by endophytic streptomycetes, especially Streptomyces griseorubiginosus-like strains was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号