共查询到20条相似文献,搜索用时 8 毫秒
1.
Spectral methods for nonstationary spatial processes 总被引:4,自引:0,他引:4
2.
Robustness to perturbation is an important characteristic of genetic regulatory systems, but the relationship between robustness and model dynamics has not been clearly quantified. We propose a method for quantifying both robustness and dynamics in terms of state-space structures, for Boolean models of genetic regulatory systems. By investigating existing models of the Drosophila melanogaster segment polarity network and the Saccharomyces cerevisiae cell-cycle network, we show that the structure of attractor basins can yield insight into the underlying decision making required of the system, and also the way in which the system maximises its robustness. In particular, gene networks implementing decisions based on a few genes have simple state-space structures, and their attractors are robust by virtue of their simplicity. Gene networks with decisions that involve many interacting genes have correspondingly more complicated state-space structures, and robustness cannot be achieved through the structure of the attractor basins, but is achieved by larger attractor basins that dominate the state space. These different types of robustness are demonstrated by the two models: the D. melanogaster segment polarity network is robust due to simple attractor basins that implement decisions based on spatial signals; the S. cerevisiae cell-cycle network has a complicated state-space structure, and is robust only due to a giant attractor basin that dominates the state space. 相似文献
3.
天然草地植被覆盖度的高光谱遥感估算模型 总被引:8,自引:3,他引:8
利用ASD FieldSpec Pro FRTM光谱仪,对内蒙古自治区锡林郭勒盟的天然草地进行高光谱遥感地面观测,并计算天然草地植被覆盖度;选择25个高光谱特征变量与天然草地植被覆盖度进行相关性分析.结果表明,共有17个变量通过极显著性检验,尤以红边波长范围内一阶微分波段值总和(SDr)的相关系数0.781为最高在此基础上将观测数据分成两组:一组观测数据作为训练样本(n=49),运用单变量线性、非线性和逐步回归方法,建立植被覆盖度高光谱遥感估算模型;另一组观测数据作为检验样本(n=32),进行精度检验分析结果显示,采用逐步回归分析方法,运用冠层原始反射率数据估算草地植被覆盖度的效果并不理想;而以红边波长范围内一阶微分波段值的总和(SDr)为变量的线性回归方程是最佳估算模型,模型标准差为10.4%,估算精度为83.99%. 相似文献
4.
For a set of spatially dependent dynamical models, we propose a method for estimating parameters that control temporal dynamics by spatial smoothing. The new approach is particularly relevant for analyzing spatially distributed panels of short time series. The asymptotic results show that spatial smoothing will improve the estimation in the presence of nugget effect, even when the sample size in each location is large. The proposed methodology is used to analyze the annual mink and muskrat data collected in a period of 25 years in 81 Canadian locations. Based on the proposed method, we are able to model the temporal dynamics which reflects the food chain interaction of the two species. 相似文献
5.
6.
Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. 相似文献
7.
8.
Johannes Georg Klotz Ronny Feuer Oliver Sawodny Martin Bossert Michael Ederer Steffen Schober 《EURASIP Journal on Bioinformatics and Systems Biology》2013,2013(1):1-8
One of the major challenges in complex systems biology is that of providing a general theoretical framework to describe the phenomena involved in cell differentiation, i.e., the process whereby stem cells, which can develop into different types, become progressively more specialized. The aim of this study is to briefly review a dynamical model of cell differentiation which is able to cover a broad spectrum of experimentally observed phenomena and to present some novel results. 相似文献
9.
Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predator-prey ODE model from real ecological data. 相似文献
10.
11.
12.
13.
14.
Pairwise likelihood methods for inference in image models 总被引:3,自引:0,他引:3
15.
16.
17.
18.
Identifying local extrema of expression profiles is one primary objective in some cDNA microarray experiments. To study the replication dynamics of the yeast genome, for example, local peaks of hybridization intensity profiles correspond to putative replication origins. We propose a nonparametric kernel smoothing (NKS) technique to detect local hybridization intensity extrema across chromosomes. The novelty of our approach is that we base our inference procedures on equilibrium points, namely those locations at which the first derivative of the intensity curve is zero. The proposed smoothing technique provides both point and interval estimation for the location of local extrema. Also, this technique can be used to test for the hypothesis of either one or multiple suspected locations being the true equilibrium points. We illustrate the proposed method on a microarray data set from an experiment designed to study the replication origins in the yeast genome, in that the locations of autonomous replication sequence (ARS) elements are identified through the equilibrium points of the smoothed intensity profile curve. Our method found a few ARS elements that were not detected by the current smoothing methods such as the Fourier convolution smoothing. 相似文献
19.
Natalie J. Briscoe Jane Elith Roberto Salguero‐Gmez Jos J. Lahoz‐Monfort James S. Camac Katherine M. Giljohann Matthew H. Holden Bronwyn A. Hradsky Michael R. Kearney Sean M. McMahon Ben L. Phillips Tracey J. Regan Jonathan R. Rhodes Peter A. Vesk Brendan A. Wintle Jian D.L. Yen Gurutzeta Guillera‐Arroita 《Ecology letters》2019,22(11):1940-1956
Knowing where species occur is fundamental to many ecological and environmental applications. Species distribution models (SDMs) are typically based on correlations between species occurrence data and environmental predictors, with ecological processes captured only implicitly. However, there is a growing interest in approaches that explicitly model processes such as physiology, dispersal, demography and biotic interactions. These models are believed to offer more robust predictions, particularly when extrapolating to novel conditions. Many process–explicit approaches are now available, but it is not clear how we can best draw on this expanded modelling toolbox to address ecological problems and inform management decisions. Here, we review a range of process–explicit models to determine their strengths and limitations, as well as their current use. Focusing on four common applications of SDMs – regulatory planning, extinction risk, climate refugia and invasive species – we then explore which models best meet management needs. We identify barriers to more widespread and effective use of process‐explicit models and outline how these might be overcome. As well as technical and data challenges, there is a pressing need for more thorough evaluation of model predictions to guide investment in method development and ensure the promise of these new approaches is fully realised. 相似文献