首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied telomere length in Schizosaccharomyces pombe strains carrying mutations affecting cell cycle checkpoints, DNA repair, and regulation of the Cdc2 protein kinase. Telomere shortening was found in rad1, rad3, rad17, and rad26 mutants. Telomere lengths in previously characterized rad1 mutants paralleled the replication checkpoint proficiency of those mutants. In contrast, rad9, chk1, hus1, and cds1 mutants had intact telomeres. No difference in telomere length was seen in mutants affected in the regulation of Cdc2, whereas some of the DNA repair mutants examined had slightly longer telomeres than did the wild type. Overexpression of the rad1+ gene caused telomeres to elongate slightly. The kinetics of telomere shortening was monitored by following telomere length after disruption of the rad1+ gene; the rate was ~1 nucleotide per generation. Wild-type telomere length could be restored by reintroduction of the wild-type rad1+ gene. Expression of the Saccharomyces cerevisiae RCK1 protein kinase gene, which suppresses the radiation and hydroxyurea sensitivity of Sz. pombe checkpoint mutants, was able to attenuate telomere shortening in rad1 mutant cells and to increase telomere length in a wild-type background. The functional effects of telomere shortening in rad1 mutants were assayed by measuring loss of a linear and a circular minichromosome. A minor increase in loss rate was seen with the linear minichromosome, and an even smaller difference compared with wild-type was detected with the circular plasmid.  相似文献   

2.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein involved in DNA replication, recombination and repair. In Saccharomyces cerevisiae, several mutants in the RFA1 gene encoding the large subunit of RPA have been isolated and one of the mutants with a missense allele, rfa1-D228Y, shows a synergistic reduction in telomere length when combined with a yku70 mutation. So far, only one mutant allele of the rad11+ gene encoding the large subunit of RPA has been reported in Schizosaccharomyces pombe. To study the role of S.pombe RPA in DNA repair and possibly in telomere maintenance, we constructed a rad11-D223Y mutant, which corresponds to the S.cerevisiae rfa1-D228Y mutant. rad11-D223Y cells were methylmethane sulfonate, hydroxyurea, UV and γ-ray sensitive, suggesting that rad11-D223Y cells have a defect in DNA repair activity. Unlike the S.cerevisiae rfa1-D228Y mutation, the rad11-D223Y mutation itself caused telomere shortening. Moreover, Rad11-Myc bound to telomere in a ChIP assay. These results strongly suggest that RPA is directly involved in telomere maintenance.  相似文献   

3.
Caffeine potentiates the lethal effects of ultraviolet and ionising radiation on wild-type Schizosaccharomyces pombe cells. In previous studies this was attributed to the inhibition by caffeine of a novel DNA repair pathway in S. pombe that was absent in the budding yeast Saccharomyces cerevisiae. Studies with radiation-sensitive S. pombe mutants suggested that this caffeine-sensitive pathway could repair ultraviolet radiation damage in the absence of nucleotide excision repair. The alternative pathway was thought to be recombinational and to operate in the G2 phase of the cell cycle. However, in this study we show that cells held in G1 of the cell cycle can remove ultraviolet-induced lesions in the absence of nucleotide excision repair. We also show that recombination-defective mutants, and those now known to define the alternative repair pathway, still exhibit the caffeine effect. Our observations suggest that the basis of the caffeine effect is not due to direct inhibition of recombinational repair. The mutants originally thought to be involved in a caffeine-sensitive recombinational repair process are now known to be defective in arresting the cell cycle in S and/or G2 following DNA damage or incomplete replication. The gene products may also have an additional role in a DNA repair or damage tolerance pathway. The effect of caffeine could, therefore, be due to interference with DNA damage checkpoints, or inhibition of the DNA damage repair/tolerance pathway. Using a combination of flow cytometric analysis, mitotic index analysis and fluorescence microscopy we show that caffeine interferes with intra-S phase and G2 DNA damage checkpoints, overcoming cell cycle delays associated with damaged DNA. In contrast, caffeine has no effect on the DNA replication S phase checkpoint in reponse to inhibition of DNA synthesis by hydroxyurea. Received: 16 June 1998 / Accepted: 13 July 1998  相似文献   

4.
We identified two predicted proteins in Schizosaccharomyces pombe, Rrp1 (SPAC17A2.12) and Rrp2 (SPBC23E6.02) that share 34% and 36% similarity to Saccharomyces cerevisiae Ris1p, respectively. Ris1p is a DNA-dependent ATP-ase involved in gene silencing and DNA repair. Rrp1 and Rrp2 also share similarity with S. cerevisiae Rad5 and S. pombe Rad8, containing SNF2-N, RING finger and Helicase-C domains. To investigate the function of the Rrp proteins, we studied the DNA damage sensitivities and genetic interactions of null mutants with known DNA repair mutants. Single Δrrp1 and Δrrp2 mutants were not sensitive to CPT, 4NQO, CDPP, MMS, HU, UV or IR. The double mutants Δrrp1 Δrhp51 and Δrrp2 Δrhp51 plus the triple Δrrp1 Δrrp2 Δrhp51 mutant did not display significant additional sensitivity. However, the double mutants Δrrp1 Δrhp57 and Δrrp2 Δrhp57 were significantly more sensitive to MMS, CPT, HU and IR than the Δrhp57 single mutant. The checkpoint response in these strains was functional. In S. pombe, Rhp55/57 acts in parallel with a second mediator complex, Swi5/Sfr1, to facilitate Rhp51-dependent DNA repair. Δrrp1 Δsfr1 and Δrrp2 Δsfr1 double mutants did not show significant additional sensitivity, suggesting a function for Rrp proteins in the Swi5/Sfr1 pathway of DSB repair. Consistent with this, Δrrp1 Δrhp57 and Δrrp2 Δrhp57 mutants, but not Δrrp1 Δsfr1 or Δrrp2 Δsfr1 double mutants, exhibited slow growth and aberrations in cell and nuclear morphology that are typical of Δrhp51.  相似文献   

5.
We have measured UV-induced mutation frequencies in yeast in a forward, nonselective assay system by scoring white adex ade2 double auxotrophs among parental red-pigmented ade2 clones. The frequencies of sectored and pure mutant clones were determined separately. In excision-defective strains carrying the genes rad1–1, rad3–2 and rad4–4, as well as in the double mutants, rad 1–1 rad 3–2 and rad 1–1 rad 4–4, considerably more sectored than pure clones are induced in the low-dose range; in repair-competent strains, pure mutant clones substantially outnumber the sectored clones. These results can be explained on the basis of known differences in the timing of error-prone repair during the cell division cycle; that is, we assume that error-prone repair occurs primarily before replication in RAD wild-type strains but after replication in excision-deficient mutants. It has been suggested that excision deficiency has a pleiotropic effect on heteroduplex repair and nucleotide excision repair; however, the high percentage (36.6%) of half-sectored clones found in the rad1–1 strain is hard to reconcile with this hypothesis. We propose that heteroduplex repair occurs subsequent to error-prone repair in both excision-proficient and excision-deficient strains.  相似文献   

6.
Summary The addition of 0.1% caffeine to the plating medium markedly reduced the ozone-survival of the wild-type and the rad1 and rad6 mutants of Saccharomyces cerevisiae, whereas no effect was observed in the rad52 mutant. Since, in S. cerevisiae, caffeine has been reported to interfere with the recombinational repair pathway under the control of the RAD52 gene, these results support previous observations suggesting that this pathway is involved in the repair of ozone-induced DNA damage.  相似文献   

7.
Summary Nine radiation-sensitive mutants of S. pombe showing a variety of phenotypic characteristics were analysed for their ability to excise pyrimidine dimers after ultraviolet irradiation. From earlier studies using indirect parameters, it was expected that some would be excision-deficient. Data reported here show that all the mutants tested, like wild type cells, were able to remove a high percentage of pyrimidine dimers during post-irradiation incubation in several different holding media, but not in saline or phosphate buffer. These mutants included strains showing increased, as well as others which showed decreased, levels of UV-induced mutation frequency relative to that of the wild type at the same total dose.  相似文献   

8.
Summary Mutation induction by ultraviolet light was studied in excision-defective (rad1-1) strains of Saccharomyces cerevisiae. Information about the timing of mutations in relation to postirradiation DNA replication was obtained. The experimental system involved pedigree analysis of G1 diploid cells and subsequent tetrad analysis of the mitotic segregants to detect mutations.The mutation pattern of rad1-1 strains differed from that of wild type in two respects: (1) few or none of the mutations affected both strands of the DNA, (2) mutations appeared as frequently in the second postirradiation mitotic generation as in the first.The data have led to the following conclusions about the mutation process in excision-defective (rad1-1) yeast: (a) Mutations are not fixed prior to the first postirradiation round of DNA replication. (b) Unexcised thymine dimers persist as mutagenic lesions through repeated postirradiation cell divisions. (c) Heteroduplex repair is involved in the mutation process. (d) Overlapping daughter-strand gaps are not a prerequisite for mutation. (e) The results provide no evidence that error-prone repair in this strain is inducible rather than constitutive. The data also show that (f) all 2-strand mutations (whole-colony mutants) induced in yeast by exposure to low levels of ultraviolet light are associated with excision repair, and that (g) essentially all lesions induced in excision-proficient strains have been excised at the time of the second round of postirradiation DNA synthesis.On leave of absence from the Department of Genetics, University of Edinburgh, West Mains Road, Edinburgh, Scotland EH9 3JN  相似文献   

9.
Caffeine potentiates the lethal effects of ultraviolet and ionising radiation on wild-type Schizosaccharomyces pombe cells. In previous studies this was attributed to the inhibition by caffeine of a novel DNA repair pathway in S. pombe that was absent in the budding yeast Saccharomyces cerevisiae. Studies with radiation-sensitive S. pombe mutants suggested that this caffeine-sensitive pathway could repair ultraviolet radiation damage in the absence of nucleotide excision repair. The alternative pathway was thought to be recombinational and to operate in the G2 phase of the cell cycle. However, in this study we show that cells held in G1 of the cell cycle can remove ultraviolet-induced lesions in the absence of nucleotide excision repair. We also show that recombination-defective mutants, and those now known to define the alternative repair pathway, still exhibit the caffeine effect. Our observations suggest that the basis of the caffeine effect is not due to direct inhibition of recombinational repair. The mutants originally thought to be involved in a caffeine-sensitive recombinational repair process are now known to be defective in arresting the cell cycle in S and/or G2 following DNA damage or incomplete replication. The gene products may also have an additional role in a DNA repair or damage tolerance pathway. The effect of caffeine could, therefore, be due to interference with DNA damage checkpoints, or inhibition of the DNA damage repair/tolerance pathway. Using a combination of flow cytometric analysis, mitotic index analysis and fluorescence microscopy we show that caffeine interferes with intra-S phase and G2 DNA damage checkpoints, overcoming cell cycle delays associated with damaged DNA. In contrast, caffeine has no effect on the DNA replication S phase checkpoint in reponse to inhibition of DNA synthesis by hydroxyurea.  相似文献   

10.
Summary The denV gene of bacteriophage T4 was reconstituted from two overlapping DNA fragments cloned in M13 vectors. The coding region of the intact gene was tailored into a series of plasmid vectors containing different promoters suitable for expression of the gene in E. coli and in yeast. Induction of the TAC promoter with IPTG resulted in overexpression of the gene, which was lethal to E. coli. Expression of the TACdenV gene in the absence of IPTG, or the use of the yeast GAL1 or ADH promoters resulted in partial complementation of the UV sensitivity of uvrA, uvrB, uvrC and recA mutants of E. coli and rad1, rad2, rad3, rad4 and rad10 mutants of S. cerevisiae. The extent of denV-mediated reactivation of excision-defective mutants was approximately equal to that of photoreactivation of such strains. Excision proficient E. coli cells transformed with a plasmid containing the denV gene were slightly more resistant to ultraviolet (UV) radiation than control cells without the denV gene. On the other hand, excision proficient yeast cells were slightly more sensitive to killing by UV radiation following transformation with a plasmid containing the denV gene. This effect was more pronounced in yeast mutants of the RAD52 epistasis group.  相似文献   

11.
Summary Cells of wild-type Schizosacharomyces pombe exposed to UV radiation in either G1 or G2 phase show enhanced inactivation of colony-forming ability if plated in the presence of caffeine. This UV-sensitization by caffeine is abolished in both G1 and G2 phase cells by the rad1 mutation; since both caffeine and the rad1 mutation markedly reduce recombinational events, this suggests that a recombinational repair process is active in cells irradiated either in G1 or G2 phase. A prereplicative or sister chromatid exchange recombinational process appears to account for caffeine-sensitive repair of UV-damage in G2 cells (which possess at the time of radiation exposure the duplicated genome necessary for recombination), since caffeine-sensitive repair begins immediately and is completed before resumption of DNA synthesis. In contrast, since caffeine-sensitive repair of UV-damage in G1 cells displays a considerable lag and then occurs concomitantly with DNA synthesis, it appears that G1 cells must acquire a second genome in order to accomplish a caffeine-sensitive recovery process. Since a duplicated genome is required for caffeinesensitive repair, all such repair would seem to involve a recombinational mechanism. In G1 cells the process may be a post-replication recombinational mechanism. Since G2 phase cells are considerably more UV-resistant than G1 phase cells, the prereplicative recombinational process appears to be a much more efficient process for dealing with UV-induced damage than the post-replication mechanism.UV-induced mutagenesis was examined in wildtype and rad mutants using a forward mutation system. Rad mutants which show higher UV-induced mutation rates than wild-type retain UV-sensitization by caffeine (and thus presumably retain the recombinational mechanism). In contrast, rad strains which are relatively UV-immutable compared to wild-type do not possess the caffeine-sensitive UV-repair process. The recombinational process therefore may be the major pathway responsible for UV-induced mutation.AECL Reference No. 6251; NRC Publication No. 16999  相似文献   

12.
Mutations in Aprataxin cause the neurodegenerative syndrome ataxia oculomotor apraxia type 1. Aprataxin catalyzes removal of adenosine monophosphate (AMP) from the 5′ end of a DNA strand, which results from an aborted attempt to ligate a strand break containing a damaged end. To gain insight into which DNA lesions are substrates for Aprataxin action in vivo, we deleted the Saccharomyces cerevisiae HNT3 gene, which encodes the Aprataxin homolog, in combination with known DNA repair genes. While hnt3Δ single mutants were not sensitive to DNA damaging agents, loss of HNT3 caused synergistic sensitivity to H2O2 in backgrounds that accumulate strand breaks with blocked termini, including apn1Δ apn2Δ tpp1Δ and ntg1Δ ntg2Δ ogg1Δ. Loss of HNT3 in rad27Δ cells, which are deficient in long-patch base excision repair (LP-BER), resulted in synergistic sensitivity to H2O2 and MMS, indicating that Hnt3 and LP-BER provide parallel pathways for processing 5′ AMPs. Loss of HNT3 also increased the sister chromatid exchange frequency. Surprisingly, HNT3 deletion partially rescued H2O2 sensitivity in recombination-deficient rad51Δ and rad52Δ cells, suggesting that Hnt3 promotes formation of a repair intermediate that is resolved by recombination.  相似文献   

13.
Summary The mutant allele rad9-192 renders Schizosaccharomyces pombe cells sensitive to ionizing radiation and UV light. We have isolated from a S. pombe genomic DNA library a unique recombinant plasmid that is capable of restoring wild-type levels of radioresistance to a rad9 192-containing cell population. Plasmid integration studies using the cloned DNA, coupled with mating and tetrad analyses, indicate that this isolated DNA contains the wild-type rad9 gene. We inactivated the repair function of the cloned fragment by a single insertion of the S. pombe ura4 gene. This nonfunctional fragment was used to create a viable disruption mutant, thus demonstrating that the rad9 gene does not encode an essential cellular function. In addition, the rad9-192 mutant population is as radiosensitive as the disruption mutant, indicating that rad9 gene function is severely if not totally inhibited by the molecular defect responsible for the rad9-192 phenotype. DNA sequence analysis of rad9 reveals an open reading frame of 1,278 bp, interrupted by three introns 53 bp, 57 bp, and 56 by long, respectively, and ending in the termination codon TAG. This gene is capable of encoding a protein of 426 amino acids, with a corresponding calculated molecular weight of 47,464 daltons. No significant homology was detected between the rad9 gene or its deduced protein sequence and sequences previously entered into DNA and protein sequence data banks.  相似文献   

14.
Excision repair defects of Saccharomyces cerevisiae rad1-1, rad4-4, rad7-1 and rad14 mutants were examined. As previously found, transformation of such cells with UV-irradiated plasmid DNA is poor compared to wild-type yeast. Treatment of UV-irradiated YRp12 plasmid DNA with crude preparations of Micrococcus luteus UV endonuclease before introducing it into rad1-1 cells increased transformation efficiency to wild-type levels. This is consistent with earlier reports of rad1-1 mutants being defective in the incision step of excision repair. However, with purified UV endonuclease little or no rescue occured when the UV-irradiated plasmid was incised before transformation into rad1-1 or rad4-4 cells. Furthermore, the purified UV endonuclease reduced transformation of rad7-1 and rad14 mutants to levels seen in rad1-1 and rad4-4 cells. In contrast such treatment caused only a small decrease in the transforming ability of UV-irradiated DNA in wild-type cells. These results show that yeast can normally process pre-incised, UV-irradiated DNA and that this activity is absent in rad1-1, rad4-4, rad7-1 and rad14 mutants. Thus, in addition to their previously reported roles in incision, the RAD1, 4, 7 and 14 gene products are also required for repair to continue after the incision of DNA lesions.  相似文献   

15.
We have previously shown that a checkpoint dependent on MEC1 and RAD53 slows the rate of S phase progression in Saccharomyces cerevisiae in response to alkylation damage. Whereas wild-type cells exhibit a slow S phase in response to damage, mec1-1 and rad53 mutants replicate rapidly in the presence or absence of DNA damage. In this report, we show that other genes (RAD9, RAD17, RAD24) involved in the DNA damage checkpoint pathway also play a role in regulating S phase in response to DNA damage. Furthermore, RAD9, RAD17, and RAD24 fall into two groups with respect to both sensitivity to alkylation and regulation of S phase. We also demonstrate that the more dramatic defect in S phase regulation in the mec1-1 and rad53 mutants is epistatic to a less severe defect seen in rad9Δ, rad17Δ, and rad24Δ. Furthermore, the triple rad9Δ rad17Δ rad24Δ mutant also has a less severe defect than mec1-1 or rad53 mutants. Finally, we demonstrate the specificity of this phenotype by showing that the DNA repair and/or checkpoint mutants mgt1Δ, mag1Δ, apn1Δ, rev3Δ, rad18Δ, rad16Δ, dun1-Δ100, sad4-1, tel1Δ, rad26Δ, rad51Δ, rad52-1, rad54Δ, rad14Δ, rad1Δ, pol30-46, pol30-52, mad3Δ, pds1Δ/esp2Δ, pms1Δ, mlh1Δ, and msh2Δ are all proficient at S phase regulation, even though some of these mutations confer sensitivity to alkylation.  相似文献   

16.
Mutations in DNA repair/cell cycle checkpoint genes can lead to the development of cancer. The cloning of human homologs of yeast DNA repair/cell cycle checkpoint genes should yield candidates for human tumor suppressor genes as well as identifying potential targets for cancer therapy. TheSchizosaccharomyces pombegenesrad17, rad1,andhus1have been identified as playing roles in DNA repair and cell cycle checkpoint control pathways. We have cloned the cDNA for the human homolog ofS. pombe rad17,RAD17, which localizes to chromosomal location 5q13 by fluorescencein situhybridization and radiation hybrid mapping; the cDNA for the human homolog ofS. pombe rad1,RAD1, which maps to 5p14–p13.2; and the cDNA for the human homolog ofS. pombe hus1,HUS1, which maps to 7p13–p12. The human gene loci have previously been identified as regions containing tumor suppressor genes. In addition, we report the cloning of the cDNAs for genes related toS. pombe rad17, rad9, rad1,andhus1from mouse,Caenorhabditis elegans,andDrosophila melanogaster.These includeRad17andRad9fromD. melanogaster,hpr-17 and hpr-1 fromC. elegans,and RAD1 and HUS1 from mouse. The identification of homologs of theS. pomberad checkpoint genes from mammals, arthropods, and nematodes indicates that this cell cycle checkpoint pathway is conserved throughout eukaryotes.  相似文献   

17.
A. M. M. Ali 《Genetica》1970,41(1):334-341
The response to possible precursors of methionine was determined in 137 methionine-requiring mutants ofSchizosaccharomyces pombe. Probably, homocysteine is directly synthesized from homoserine and sulphate. One mutant, growing on synthetic medium with vitamin B12 only, indicates a side pathway. Six complementation groups were observed in a sample of 27 homocysteine-requiring mutants.Met-3 andmet-4 were found to be allelic with a distance smaller than 0.01 recombination unit, which demonstrates that the second linkage group inS. pombe, proposed earlier, is a continuation of the linkage group presented byLeupold (1958).  相似文献   

18.
Postreplication repair in Saccharomyces cerevisiae.   总被引:2,自引:0,他引:2       下载免费PDF全文
Postreplication events in logarithmically growing excision-defective mutants of Saccharomyces cerevisiae were examined after low doses of ultraviolet light (2 to 4 J/m2). Pulse-labeled deoxyribonucleic acid had interruptions, and when the cells were "chased," the interruptions were no longer detected. Since the loss of interruptions was not associated with an exchange of pyrimidine dimers at a detection level of 10 to 20% of the induced dimers, we concluded that postreplication repair in excision-defective mutants (or leaky mutants) does not involve molecular recombination. Pyrimidine dimers were assayed by utilizing the ultraviolet-endonuclease activity in extracts of Micrococcus luteus and newly developed alkaline sucrose gradient techniques, which yielded chromosomal-size deoxyribonucleic acid after treatment of irradiated cells.  相似文献   

19.
Summary The response of the wild type strain and 20 different radiation sensitive mutants of S. pombe to liquid holding after ultraviolet irradiation was ivestigated. Three of the sensitive mutants tested showed appreciable liquid holding recovery, as opposed to the negative liquid holding effect observed in the wild type cells. One of these mutants is reported to be recombination-deficient while the other two have a normal recombination capability. Further experiments were carried out by using G1 cells and ascospores to test the possible role of a recombinational type of repair pathway in the failure of wild type S. pombe to show liquid holding recovery. Data from such studies indicated that the negative liquid holding effect observed in the wild type cannot be ascribed to this particular pathway. This conclusion is further supported by the observation that caffeine which is believed to inhibit mainly the recombinational repair in this yeast, did not alter the negative liquid holding effect in the wild type. This observation implies that the caffeine-sensitive repair process occurs only in a rich medium and not in the non-nutrient solution. Data have been discussed as these relate to possible cause(s) of negative liquid holding effect in this organism.  相似文献   

20.
 New prp (pre-mRNA processing) mutants of the fission yeast Schizosaccharomyces pombe were isolated from a bank of 700 mutants that were either temperature sensitive (ts-) or cold sensitive (cs-) for growth. The bank was screened by Northern blot analysis with probes complementary to S. pombe U6 small nuclear RNA (sn RNA), the gene for which has a splicesomal (mRNA-type) intron. We identified 12 prp mutants that accumulated the U6 snRNA precursor at the nonpermissive temperature. All such mutants were also found to have defects in an early step of TFIID pre-mRNA splicing at the nonpermissive temperature. Complementation analyses showed that seven of the mutants belong to six new complementation groups designated as prp8 and prp10-prp14, whereas the five other mutants were classified into the known complementation groups prp1, prp2 and prp3. Interestingly, some of the isolated prp mutants produced elongated cells at the nonpermissive temperature, which is a phenotype typical of cell division cycle (cdc) mutants. Based on these findings, we propose that some of the wild-type products from these prp + genes play important roles in the cellular processes of pre-mRNA splicing and cell cycle progression. Received: 15 April 1996/Accepted: 9 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号