首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The amino groups of ribonuclease A (RNase-A) have been methylated with formaldehyde and borohydride to provide observable resonances for proton magnetic resonance (PMR) studies. Although enzymatic activity is lost, PMR difference spectroscopy and PMR studies of thermal denaturation show native conformation is largely preserved in methylated RNase-A. Resonances corresponding to the NH2-terminal alpha-amino and 10 xi-amino N-methyl groups are titrated at 220 MHz to obtain pK values. After correction for the effects of methylation, using values previously derived from model compound studies, a pK of 6.6 is found for the alpha-amino group, a pK of 8.6 for the xi-amino group of lysine-41 and pK values ranging from 10.6 to 11.2 for the other lysine xi-amino groups. Interactions between lysine-7 and lysine-41 or between the alpha-amino and xi-amino groups of lysine-1 have been proposed to account for deviations from simple titration behaviour. The correct continuities for the titration curves of the histidine H-2 proton resonances have been confirmed by selective deuteration of the H-2 protons. Titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A show deviations from the titration curves for the native enzyme, indicating some alteration of the active-site conformation. In the presence of phosphate, titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A indicate binding of phosphate at the active site, but these curves continue to show deviations from the titration behaviour of native RNase-A. The titration curve for the N-methyl resonance of lysine-41 is perturbed considerably by the presence of phosphate, which indicates a possible catalytic role for lysine-41.  相似文献   

2.
The ionization constants of 3 of the histidine residues of ribonuclease A have beenobtained at 5 temperatures from the nuclear magnetic resonance titration curves of the imidazole C2 proton resonances. Thermodynamic parameters derived from the ionization constants indicate that histidine residues 105 and 119 are fairly well exposed to solvent, while histidine residue 12 is in a somewhat more restricted environment. Measurements of the low pH inflection present in the titration curve of histidine-12 yield a large negative entropy value, indicating that the group givine rise to this inflection is also buried.  相似文献   

3.
The 1H-n.m.r. spectra of human somatotropin (growth hormone) show perturbed peaks from individual aromatic and aliphatic apolar residues, characteristic of a specifically folded globular structure. The imidazole C-2-H resonances of the histidine residues (at positions 18, 21 and 151 in the somatotropin sequence) were individually resolved, and their titration behaviour in the pH range 1.2-11.5 was investigated. The imidazole C-2-H resonance of histidine-151 is assigned, by comparison of its titration behaviour in human somatotropin and desamido-somatotropin (Asn-152 leads to Asp-152). The C-2-H resonances of all three histidine residues are assigned, by comparison of their relative deuterium-exchange rates (determined by n.m.r.) and the relative tritium-exchange rates of the histidine residues (determined by tryptic digestion of tritiated human somatotropin and reversed-phase high-pressure liquid-chromatographic separation of the histidine-containing tryptic peptides). There is evidence that histidine-18 forms an ion-pair bond with a glutamic acid or aspartic acid residue. The globular structure does not appear to change from pH3 to 11.5, though there is evidence for an unfolding of a region of the structure (involving histidine-21 and a tyrosine residue) below pH3.  相似文献   

4.
1. When ribonuclease T1 [EC 3.1.4.8] (0.125% solution) was treated with a 760-fold molar excess of iodoacetamide at pH 8.0 and 37 degrees, about 90% of the original activity was lost in 24 hr. The half-life of the activity was about 8 hr. The binding ability for 3'-GMP was lost simultaneously. Changes were detected only in histidine and the amino-terminal alanine residues upon amino acid analyses of the inactivated protein and its chymotryptic peptides. The inactivation occurred almost in parallel with the loss of two histidine residues in the enzyme. The pH dependences of the rate of inactivation and that of loss of histidine residues were similar and indicated the implication of a histidine residue or residues with pKa 7.5 to 8 in this reaction. 3'-GMP and guanosine showed some protective effect against loss of activity and of histidine residues. The reactivity of histidine residues was also reduced by prior modification of glutamic acid-58 with iodoacetate, of lysine-41 with maleic or cis-aconitic anhydride or 2,4,6-trinitrobenzenesulfonate or of arginine-77 with ninhydrin. 2. Analyses of the chymotryptic peptides from oxidized samples of the iodoacetamide-inactivated enzyme showed that histidine-92 and histidine-40 reacted with iodoacetamide most rapidly and at similar rates, whereas histidine-27 was least reactive. Alkylation of histidine-92 was markedly slowed down when the Glu58-carboxymethylated enzyme was treated with iodoacetamide. On the other hand, alkylation of histidine-40 was slowed down most in the presence of 3'-GMP. These results suggest that histidine-92 and histidine-40 are involved in the catalytic action, probably forming part of the catalytic site and part of the binding site, respectively, and that histidine-27 is partially buried in the enzyme molecule or interacts strongly with some other residue, thus becoming relatively unreactive.  相似文献   

5.
J A Carver  J H Bradbury 《Biochemistry》1984,23(21):4890-4905
The resolved 1H NMR resonances of the aromatic region in the 270-MHz NMR spectrum of sperm whale, horse, and pig metmyoglobin (metMb) have been assigned, including the observable H-2 and H-4 histidine resonances, the tryptophan H-2 resonances, and upfield-shifted resonances from one tyrosine residue. The use of different Mb species, carboxymethylation, and matching of pK values allows the assignment of the H-4 resonances, which agree in only three cases out of seven with scalar-correlated two-dimensional NMR spectroscopy assignments by others. The conversion to hydroxymyoglobin at high pH involves rearrangements throughout the molecule and is observed by many assigned residues. In sperm whale ferric cyanomyoglobin, nine H-2 and eight H-4 histidine resonances have been assigned, including the His-97 H-2 resonance and tyrosine resonances from residues 103 and 146. The hyperfine-shifted resonances from heme and near-heme protons observe a shift with a pK = 5.3 +/- 0.3 (probably due to deprotonation of His-97, pK = 5.6) and another shift at pK = 10.8 +/- 0.3. The spectrum of high-spin ferrous sperm whale deoxymyoglobin is very similar to that of metMb, which allows the assignment of seven surface histidine H-2 and H-4 resonances and also resonances from the two tryptophan residues and one tyrosine. In diamagnetic sperm whale (carbon monoxy)myoglobin (COMb), 10 His H-2 and 11 His H-4 resonances are observed, and 8 H-2 and 9 H-4 resonances are assigned, including His-64 H-4, the distal histidine. This important resonance is not observed in sperm whale oxymyoglobin, which in general shows very similar titration curves to COMb. Histidine-36 shows unusual titration behavior in the paramagnetic derivatives but normal behavior in the diamagnetic derivatives, which is discussed in the accompanying paper [Bradbury, J. H., & Carver, J. A. (1984) Biochemistry (following paper in this issue)].  相似文献   

6.
Microenvironments of the three histidine residues located at the positions 18, 26, and 33 from the amino terminus in bovine heart cytochrome c were analysed in solution by the hydrogen-tritium exchange titration method, which has been developed in this laboratory. Histidine-18, which is liganded to the heme iron, and histidine-26 did not incorporate tritium in native state, indicating that the two are located in solvent inaccessible hydrophobic regions. Histidine-33 was labeled with tritium to an appreciable extent and seemed to be partially buried in the molecule. The pKa value estimated for histidine-33 was 6.1 at 37 degrees by the tritium exchange titration, suggesting that the residue interacts very weakly with a neighboring cationic group. These results seem to be compatible with the tertiary structure of the protein deduced from the X-ray crystallographic analysis.  相似文献   

7.
A proton nuclear magnetic resonance (NMR) study at 100 and 300 MHz of neurotoxin II from the venom of Middle-Asian cobra Naja naja oxiana has been performed in 2H2O and H2O solutions. By means of chemical modification and double resonance all the aromatic residue resonances have been assigned. From the NMR titration curves, pK values of histidine 4 and histidine 31 residues have been determined. For one of the two neighbouring tryptophan residues pH dependence (in the 2-8-pH range) of the chemical shifts of indole protons has been revealed. According to the different sensitivity of the linewidth of indole NH resonances to pH in H2O solution, the accessibility of each of the tryptophan residues has been estimated. Temperature dependence has been observed for the linewidth of the aromatic resonances of the tyrosine 24 residue. Deuterium exchange rates have been measured for amide protons as well as for C(2)H histidine resonances. The NMR data obtained have allowed the conclusions to be made that the two histidine residues and one of the tryptophan residues should be localized on the surface of the protein globule, that arginine residues should be present in the environment of histidine 4, that histidine 31 and the buried tryptophan are possibly localized in close spatial proximity and that the side chain of tyrosine 24 is buried within the protein globule.  相似文献   

8.
1H NMR spectroscopy at 100 MHz was used to determine the first-order rate constants for the 1H-2H exchange of the H-2 histidine resonances of RNase-A in 2H2O at 35 degrees C and pH meter readings of 7, 9, 10 and 10.5. Prolonged exposure in 2H2O at 35 degrees C and pH meter reading 11 caused irreversible denaturation of RN-ase-A. The rate constants at pH 7 and 9 agreed reasonably well with those obtained in 1H-3H exchange experiments by Ohe, J., Matsuo, H., Sakiyama, F. and Narita, K. [J. Biochem, (Tokyo) 75, 1197-1200 (1974)]. The rate data obtained by various authors is summarised and the reasons for the poor agreement between the data is discussed. The first-order rate constant for the exchange of His-48 increases rapidly from near zero at pH 9 (due to its inaccessibility to solvent) with increase of pH to 10.5 The corresponding values for His-119 show a decrease and those for His-12 a small increase over the same pH range. These changes are attributed to a conformational change in the hinge region of RNase-A (probably due to the titration of Tyr-25) which allows His-48 to become accessible to solvent. 1H NMR spectra of S-protein and S-peptide, and of material partially deuterated at the C-2 positions of the histidine residues confirm the reassignment of the histidine resonances of RNase-A [Bradbury, J. H. & Teh, J. S. (1975) Chem. Commun., 936-937]. The chemical shifts of the C-2 and C-4 protons of histidine-12 of S-peptide are followed as a function of pH and a pK' value of 6.75 is obtained. The reassignment of the three C-2 histidine resonances of S-protein is confirmed by partial deuteration studies. The pK' values obtained from titration of the H-2 resonances of His-48, His-105 and His-119 are 5.3, 6.5 and 6.0, respectively. The S-protein is less stable to acid than RNase-A since the former, but not the latter, shows evidence of reversible denaturation at pH 3 and 26 degrees C. His-48 in S-protein titrates normally and has a lower pK than in RN-ase-A probably because of the absence of Asp-14, which in RN-ase-A forms a a hydrogen bond with His-48 and causes it to be inaccessible to solvent, at pH values below 9.  相似文献   

9.
The mammalian-type cytochrome c of the basidiomycete Ustilago sphaerogena contains in a single polypeptide chain of 107 residues, two histidine residues located at positions 18 and 33, and one methionine residue situated at position 80 (Bitar et al., 1972). The reaction of Ustilago ferricytochrome c with bromoacetate at neutral pH resulted in the modification of histidine-33, but not of histidine-18 or of the invariant methionine residue. The activities of Ustilago cytochrome c with mitochondrial cytochrome c oxidase and with NADH-cytochrome c reductase were unaltered by the modification. The equilibrium constants for the formation of low-spin complexes of the ferrihaem octapeptide of horse cytochrome c (residues 14-21, including the haem bound covalently to cysteines 14 and 17) with imidazole, N(2)-acetylhistidine and monocarboxymethyl derivatives of N(2)-acetylhistidine were determined spectrophotometrically. Alkylation of the imidazole side-chain group of N(2)-acetylhistidine resulted in a marked decrease in its ability to form low-spin ferrihaem complexes. These results indicate that in Ustilago ferricytochrome c in solution histidine-33 is not involved in the central co-ordination complex. Since side-chain groups of residues other than histidine and methionine do not appear to be involved in the central complexes of other mammalian-type cytochromes c (Hettinger & Harbury, 1964, 1965; Myer & Harbury, 1965) it is likely that in Ustilago ferricytochrome c in solution at neutral pH, the side-chain groups of histidine-18 and methionine-80 are involved in the central co-ordination complex. The latter is stable over the pH range 2.6-8.4.  相似文献   

10.
The pKa values of the three histidine residues in the Fv fragment (variable region of the heavy and light chains) of the mouse myeloma protein MOPC 315, measured by high resolution n.m.r. (nuclear magnetic resonance), are 5.9, 6.9 and 8.2. The perturbation of the pKa of one of the histidines (pKa 6.9) on the addition of hapten and the narrow linewidth of its proton resonances suggests that it is at the edge of the combining site. References to the model of the Fv fragment [Padlan, Davies, Pecht, Givol & Wright (1976) Cold Spring Harbor Symp. Quant. Biol. 41, in the press] allows assignment of the three histidine residues, histidine-102H, histidine-97L and histidine-44L. The determination of the pKa of the phosphorus group, by 31P n.m.r., of a homologous series of Dnp- and Tnp- (di- and tri-nitrophenyl) haptens has located a positively charged residue. Molecular-model studies on the conformations of these haptens show that the residue is at the edge of the site. The model suggests that the positively charged residue is either arginine-95L or lysine-52H.  相似文献   

11.
Insulin has proved difficult to study by nuclear magnetic resonance spectroscopy because of its complex aggregation behaviour in solution and its insolubility between pH 4 and 7. Now for the first time it has been possible to assign the 1H nuclear magnetic resonances of the H-2 histidine protons of residues B5 and B10 of bovine 2 Zn insulin and Zn-free insulin, and the B5 and A8 residues of hagfish insulin. As expected, the addition of Zn to Zn-free insulin causes virtually no change in the chemical shift or the rate of H-D exchange of the H-2 proton of histidine B5, which is not involved in Zn binding in the 2 Zn insulin hexamer. The rate of H-D exchange of the H-2 proton of histidine B10 is decreased markedly on Zn binding at this residue, but the chemical shift of the resonance remains virtually constant owing to the balancing of an upfield ring current shift of the ordered histidine residues by a downfield shift due to electron withdrawal from the ring nitrogen by the Zn binding.  相似文献   

12.
P Gettins  E W Wooten 《Biochemistry》1987,26(14):4403-4408
The denaturation of human and bovine antithrombin III by guanidine hydrochloride has been followed by 1H NMR spectroscopy. The same unfolding transition seen previously from circular dichroism studies [Villanueva, G. B., & Allen, N. (1983) J. Biol. Chem. 258, 14048-14053] at low denaturant concentration was detected here by discontinuous changes in the chemical shifts of the C(2) protons of two of the five histidines in human antithrombin III and of three of the six histidines in bovine antithrombin III. These two histidines in human antithrombin III are assigned to residue 1 and, more tentatively, to residue 65. Two of the three histidines similarly affected in the bovine protein appear to be homologous to residues in the human protein. This supports the proposal of similar structures for the two proteins. In the presence of heparin, the discontinuous titration behavior of these histidine resonances is shifted to higher denaturant concentration, reflecting the stabilization of the easily unfolded first domain of the protein by bound heparin. From the tentative assignment of one of these resonances to histidine-1, it is proposed that the heparin binding site of antithrombin III is located in the N-terminal region and that this region forms a separate domain from the rest of the protein. The pattern of disulfide linkages is such that this domain may well extend from residue 1 to at least residue 128. Thermal denaturation also leads to major perturbation of these two histidine resonances in human antithrombin III, though stable intermediates in the unfolding were not detected.  相似文献   

13.
J L Markley 《Biochemistry》1975,14(16):3546-3554
The deuterium exchange kinetics of the C(2) protons of the four histidine residues of native bovine pancreatic ribonuclease A have been followed at pH 6.5 and 8.0 by proton magnetic resonance spectroscopy (1H NMR). Comparison of the order of exchange of the histidine peaks with tritium exchange rates into individual histidine residues [Ohe, M., Matsuo, H., Sakiyama, F., and Narita, K. (1974), J. Biochem. (Tokyo) 75, 1197] supports the previous assignment of histidine NMR peaks H(1) and H(4) to histidine-105 and histidine-48 but requires reassignment of peaks H(2) and H(3) to histidine-119 and histidine-12, respectively. Ribonuclease A samples having differentially deuterated histidines have been used to verify the existence of crossover points in the histidine proton magnetic resonance titration curves and to observe the discontinuous titration curve of histidine-48. Proton magnetic resonance peaks have been assigned to the C(4) protons of the four histidine residues of ribonuclease A on the basis of their unit proton areas and by matching their titration shifts with the more readily visible C(2)-H peaks of the histidines. The pK' values derived from the C(4)-H data agree, within experimental limits, with those derived from C(2)-H data. The C(4)-H peaks were assigned to histidine-12, -48, -105, and -119 of ribonuclease A on the basis of their pH dependence, pK' values, shifts of their pK' values in the presence of inhibitor cytidine 3'-phosphate, and by comparison with the assignments of the histidine C(2)-H peaks above.  相似文献   

14.
The 170MHZ 1 H n.m.r. spectra of the Cu(II)/Zn(II), Cu(I)/Zn(II) and apo- forms of human erythrocyte superoxide dismutase (EC 1.15.1.1) are reported. Resonances are assigned to the C-2 and C-4 protons of histidine residues in the active site, and it is suggested that five or six histidine residues serve as ligands to the metal ions in each subunit of the enzyme. The remaining assigned resonances are associated with histidine-41, N-terminal N-acetyl group, histidine- 108 and cysteine- 109. A comparison of the n.m.r. spectra of human and bovine superoxide dismutases suggests significant structural homology.  相似文献   

15.
M M Snel  R Kaptein  B de Kruijff 《Biochemistry》1991,30(14):3387-3395
The topology of apocytochrome c, the heme-free precursor of the mitochondrial protein cytochrome c, was investigated in a lipid-associated form. For this purpose photochemically induced dynamic nuclear polarization 1H nuclear magnetic resonance (CIDNP 1H NMR) spectroscopy and quenching of tryptophan and tyrosine fluorescence by acrylamide were applied to an apocytochrome c-sodium dodecyl sulfate (SDS) micellar system. A pH titration of the chemical shifts of the histidine C2 proton resonances of apocytochrome c, using conventional 1H NMR, yielded pK(a)'s of 5.9 +/- 0.1 and 6.2 +/- 0.1, which were assigned to histidine-18 and -33 and histidine-26, respectively. In the presence of SDS micelles an average pK(a) of 8.1 +/- 0.1 was obtained for all histidine C2 protons. Photo-CIDNP enhancements of the histidine, tryptophan, and tyrosine residues, contained in the intact apocytochrome c and in chemically and enzymatically prepared fragments of the precursor, were reduced in the presence of SDS micelles. Similarly, the quenching of the tryptophan fluorescence of the polypeptides by acrylamide was diminished in the presence of SDS. These results indicate the aromatic residues studied are localized in the interface of the SDS micelle.  相似文献   

16.
The proton magnetic resonance spectrum at 300 MHz of the histidine residues in a semisynthetic derivative of bovine pancreatic ribonuclease (RNase A) has been determined. The derivative RNase 1-118 . 111-124 was prepared by enzymically removing six residues from the COOH terminus of the protein (positions 119-124) and then complementing the inactive RNase 1-118 with a chemically synthesized peptide containing the COOH-terminal 14 residues of ribonuclease (RNase 111-124) [Lin, M.C., Gutte, B., Moore, S., & Merrifield, R.B. (1970) J. Biol. Chem. 245, 5169-5170]. Comparison of the line positions of the C(2)-1H resonances of these residues and of their pH dependence with those reported by other workers has allowed assignment of the resonances to individual residues, as well as the determination of individual pK values for histidine-12, histidine-105, and histidine-119. The assignment of histidine-119 was confirmed by the use of a selectively deuterated derivative. The titration behavior of all four histidine residues is indistinguishable from that observed by others for bovine pancreatic ribonuclease A. Partial dissociation of the noncovalent semisynthetic complex was evident at 30 degrees C, pH 4.0, 0.3 M NaCl; pertinent spectra were analyzed to provide an estimate of the association constant between the component chains under these conditions of 1.9 X 10(3) M-1.  相似文献   

17.
The contact interactions between a synthetic peptide and three different anti-peptide monoclonal antibodies have been studied by nuclear magnetic resonance (NMR). The synthetic peptide is CTP3 (residues 50-64 of the B subunit of cholera toxin) suggested as a possible epitope for synthetic vaccine against cholera. The hybridoma cell lines TE33 and TE32 derived after immunization with CTP3 produce antibodies cross-reactive with the native toxin. The cell line TE34 produces anti-CTP3 antibodies that do not bind the toxin. Selective deuteriation of the antibodies has been used to simplify the proton NMR spectra and to assign resonances to specific types of amino acids. The difference spectra between the proton NMR spectrum of the peptide-Fab complex and that of Fab indicate that the combining site structures of TE32 and TE33 are very similar but differ considerably from the combining site structure of TE34. By magnetization transfer experiments with selectively deuteriated Fab fragment of the antibody, we have found that in TE32 and TE33 the histidine residue of the peptide is buried in a hydrophobic pocket of the antibody combining site, formed by a tryptophan and two tyrosine residues. The hydrophobic nature of the pocket is further demonstrated by the lack of any pH titration effect on the chemical shift of the C4H of the bound peptide histidine. In contrast, for TE34 we have found only one tyrosine residue in contact with the histidine of the peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
One of the four titrating histidine ring C-2 proton resonances of bovine pancreatic ribonuclease has been assigned to histidine residue 12. This was accomplished by a direct comparison of the rate of tritium incorporation into position C-2 of histidine 12 of S-peptide (residues 1 to 20) derived from ribonuclease S, with the rates of deuterium exchange of the four histidine C-2 proton resonances of ribonuclease S under the same experimental conditions. The same assignment was obtained by a comparison of the NMR titration curves of ribonuclease S, the noncovalent complex of S-peptide and S-protein (residues 21 to 124) with the results for the recombined complex in which position C-2 of histidine 12 was fully deuterated. The second active site histidine resonance was assigned to histidine residue 119 by consideration of the NMR titration results fro carboxymethylated histidines and 1-carboxymethylhistidine 119 ribonuclease. This assignment is a reversal of that originally reported, and has important implications for the interpretation of NMR titration data of ribonuclease.  相似文献   

19.
The tryptophan-containing peptides were isolated from the chymotryptic digest of S-carboxymethylated papain. Residue 175, which is strongly hydrogen-bonded to the active-site histidine residue in the tertiary structure of papain, is asparagine, confirming the work of Kimmel, Rogers & Smith (1965). Its function is probably to maintain the orientation and tautomeric state of the imidazole ring of histidine-159. The amino acid sequence predicted from the electron-density map of papain for residues 64-68 was confirmed, but residue 64 is asparagine, not aspartic acid. This residue, which is about 10 A from the thiol group of the active-site cysteine-25, cannot therefore be a site of electrostatic attraction for substrates of basic amino acids.  相似文献   

20.
Summary The methods which have been used for the observation and assignment of resonances in the NMR spectra of proteins are reviewed. One such method, the selective deuteration of the aromatic protons of tryptophyl residues, is studied by NMR spectroscopy in model compounds in this paper, and in proteins in the following paper.On the basis of a reassignment of the PMR spectrum of the aromatic protons of L-tryptophan, the relative rates of H-D exchange in deutero-trifluoroacetic acid (d-TFA) are H-2 > H-5 > H-6 > H-4 – H-7. The energies of activation for the first order exchange of both the H-2 and H-5 protons is 12 k.cal.mol–1.The rate constant for exchange of the H-2 protons of tryptophyl residues in peptides is much greater than in the amino acid itself and 5–10 times that for exchange of the H-5 protons. This suggests that the method can be used to label tryptophyl residues in proteins rapidly and specifically.An invited article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号