首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emergence of compensatory drug-resistant mutations in HIV-1 protease challenges the common view of the reaction mechanism of this enzyme. Here, we address this issue by performing classical and ab initio molecular dynamics simulations (MD) on a complex between the enzyme and a peptide substrate. The classical MD calculation reveals large-scale protein motions involving the flaps and the cantilever. These motions modulate the conformational properties of the substrate at the cleavage site. The ab initio calculations show in turn that substrate motion modulates the activation free energy barrier of the enzymatic reaction dramatically. Thus, the catalytic power of the enzyme does not arise from the presence of a pre-organized active site but from the protein mechanical fluctuations. The implications of this finding for the emergence of drug-resistance are discussed.  相似文献   

2.
A series of crystal structures of trypsin, containing either an autoproteolytic cleaved peptide fragment or a covalently bound inhibitor, were determined at atomic and ultra-high resolution and subjected to ab initio quantum chemical calculations and multipole refinement. Quantum chemical calculations reproduced the observed active site crystal structure with severe deviations from standard stereochemistry and indicated the protonation state of the catalytic residues. Multipole refinement directly revealed the charge distribution in the active site and proved the validity of the ab initio calculations. The combined results confirmed the catalytic function of the active site residues and the two water molecules acting as the nucleophile and the proton donor. The crystal structures represent snapshots from the reaction pathway, close to a tetrahedral intermediate. The de-acylation of trypsin then occurs in true SN2 fashion.  相似文献   

3.
On the system methanethiol/imidazole/formaldehyde (modelling the active site of papain) we performed ab initio self-consistent-field molecular orbital calculations using a rather large basis of Gaussian-type functions. A point charge representation of the long central alpha-helix present in the enzyme, was added in order to establish the influence of the electric field of the helix (which amounts to 10(9) V m-1 in the active site region) on the equilibrium: RSH...Im in equilibrium RS-...ImH+, which is an essential step in a recently proposed mechanism for the catalytic action of papain. Our results show that the helix stabilizes the ion-pair by 15 kcal mole-1 more than the neutral form making the two configurations energetically equivalent and lowers the energy barrier in the reaction path by 8 kcal mole-1, thus shifting the equilibrium considerably towards the ionic situation and increasing the rate of proton transfer by several orders of magnitude. We conclude that "active site" helices, present in many enzymes, play a pertinent role in enzyme catalysis.  相似文献   

4.
5.
The viability of different mechanisms of catalysis and inhibition of the nickel-containing enzyme urease was explored using the available high-resolution structures of the enzyme isolated from Bacillus pasteurii in the native form and inhibited with several substrates. The structures and charge distribution of urea, its catalytic transition state, and three enzyme inhibitors were calculated using ab initio and density functional theory methods. The DOCK program suite was employed to determine families of structures of urease complexes characterized by docking energy scores indicative of their relative stability according to steric and electrostatic criteria. Adjustment of the parameters used by DOCK, in order to account for the presence of the metal ion in the active site, resulted in the calculation of best energy structures for the nickel-bound inhibitors beta-mercaptoethanol, acetohydroxamic acid, and diamidophosphoric acid. These calculated structures are in good agreement with the experimentally determined structures, and provide hints on the reactivity and mobility of the inhibitors in the active site. The same docking protocol was applied to the substrate urea and its catalytic transition state, in order to shed light onto the possible catalytic steps occurring at the binuclear nickel active site. These calculations suggest that the most viable pathway for urea hydrolysis involve a nucleophilic attack by the bridging, and not the terminal, nickel-bound hydroxide onto a urea molecule, with active site residues playing important roles in orienting and activating the substrate, and stabilizing the catalytic transition state.  相似文献   

6.
Ishida T 《Biochemistry》2006,45(17):5413-5420
To elucidate the catalytic advantage of the low-barrier hydrogen bond (LBHB), we analyze the hydrogen bonding network of the catalytic triad (His57-Asp102-Ser195) of serine protease trypsin, one of the best examples of the LBHB reaction mechanism. Especially, we focus on the correlation between the change of the chemical shifts and the structural rearrangement of the active site in the acylation process. To clarify LBHB, we evaluate the two complementary properties. First, we calculate the NMR chemical shifts of the imidazole ring of His57 by the gauge-including atomic orbital (GIAO) approach within the ab initio QM/MM framework. Second, the free energy profile of the proton transfer from His57 to Asp102 in the tetrahedral intermediate is obtained by ab initio QM/MM calculations combined with molecular dynamics free energy perturbation (MD-FEP) simulations. The present analyses reveal that the calculated shifts reasonably reproduce the observed values for (1)H chemical shift of H(epsilon)(1) and H(delta)(1) in His57. The (15)N and (13)C chemical shifts are also consistent with the experiments. It is also shown that the proton between His57 and Asp102 is localized at the His57 side. This largely downfield chemical shift is originated from the strong electrostatic interaction, not a covalent-like bonding character between His57 and Asp102. Also, it is proved that a slight downfield character of H(epsilon)(1) is originated from a electrostatic interaction between His57 and the backbone carbonyl group of Val213 and Ser214. These downfield chemical shifts are observed only when the tetrahedral intermediate is formed in the acylation process.  相似文献   

7.
Piana S  Carloni P 《Proteins》2000,39(1):26-36
The enzyme protease from the human immunodeficiency virus type 1 (HIV-1 PR) is one of the main targets for therapeutic intervention in AIDS. Computer modeling is useful for probing the binding of novel ligands, yet empirical force field-based methods have encountered problems in adequately describing interactions of the catalytic aspartyl pair. In this work we use ab initio dynamic methods to study the molecular interactions and the conformational flexibility of the Asp dyad in the free enzyme. Calculations are performed on model complexes that include, besides the Asp dyad, the conserved Thr26 and Gly27 residues and water molecules present in the active site channel. Our calculations provide proton location and binding mode of the active-site water molecule, which turn out to be different from those of the eukariotic isoenzyme. Furthermore, the calculations reproduce well the structural features of the aspartyl dyad in the protein. Finally, they allow the identification of both dipole/charge interactions and a low-barrier hydrogen bond as important stabilizing factors for the peculiar conformation of the active site. These findings are consistent with site-directed mutagenesis experiments on the 27, 27; positions (Bagossi et al., Protein Eng 1996;9:997-1003). The electric field of the protein frame (included in some of the calculations) does not affect significantly the chemical bonding at the cleavage site. Proteins 2000;39:26-36.  相似文献   

8.
As a model for interactions present in the active site of orotidine-5'-monophosphate decarboxylase (ODCase), the effect of hydrogen bonds to the carbonyl groups (O-2 and O-4) of orotic acid and its decarboxylation product was probed with ab initio calculations. We have found that the transition state/carbanion intermediate is a better proton receptor and therefore, the hydrogen bonds can be a modest source of catalysis. Comparison of the calculated data with results from site-directed mutagenesis provides some insights into the polarity of the active site.  相似文献   

9.
The catalytic mechanism of triosephosphate isomerase (TIM) was investigated with ab initio quantum mechanical calculations. Electrostatic interactions between the quantum mechanical active site and the protein and solvent environment were modeled using the finite difference Poission-Boltzman method. The complexes of TIM with the substrate dihydroxyacetone phosphate (DHAP), five possible intermediates and the product glyceraldehyde-3-phosphate (GAP) were optimized in the active-site model at the 3-21G(*) level and energy profile for the proton abstraction from DHAP by the active-site Glu167 was calculated at the MP2/3-21G(*)//3-21G(*) level. Calculated energetics of the enzyme reaction were found to be in reasonable agreement with the experimental findings. Calculations revealed that an enediol of the substrate is a probable intermediate in the enzyme reaction. It was suggested that the proton abstracted from the substrate by the active-site glutamate goes to the carbonyl oxygen of the substrate producing enediol intermediate either directly or after it is exchanged with solvent. © 1996 Wiley-Liss, Inc.  相似文献   

10.
S-adenosyl-L-methionine- (AdoMet-) dependent methyltransferases are widespread, play critical roles in diverse biological pathways, and are antibiotic and cancer drug targets. Presently missing from our understanding of any AdoMet-dependent methyl-transfer reaction is a high-resolution structure of a precatalytic enzyme/AdoMet/DNA complex. The catalytic mechanism of DNA cytosine methylation was studied by structurally and functionally characterizing several active site mutants of the bacterial enzyme M.HhaI. The 2.64 A resolution protein/DNA/AdoMet structure of the inactive C81A M.HhaI mutant suggests that active site water, an approximately 13 degree tilt of the target base toward the active site nucleophile, and the presence or absence of the cofactor methylsulfonium are coupled via a hydrogen-bonding network involving Tyr167. The active site in the mutant complex is assembled to optimally align the pyrimidine for nucleophilic attack and subsequent methyl transfer, consistent with previous molecular dynamics ab initio and quantum mechanics/molecular mechanics calculations. The mutant/DNA/AdoHcy structure (2.88 A resolution) provides a direct comparison to the postcatalytic complex. A third C81A ternary structure (2.22 A resolution) reveals hydrolysis of AdoMet to adenosine in the active site, further validating the coupling between the methionine portion of AdoMet and ultimately validating the structural observation of a prechemistry/postchemistry water network. Disruption of this hydrogen-bonding network by a Tyr167 to Phe167 mutation does not alter the kinetics of nucleophilic attack or methyl transfer. However, the Y167F mutant shows detectable changes in kcat, caused by the perturbed kinetics of AdoHcy release. These results provide a basis for including an extensive hydrogen-bonding network in controlling the rate-limiting product release steps during cytosine methylation.  相似文献   

11.
Allan Beveridge 《Proteins》1996,24(3):322-334
We have performed ab initio Hartree-Fock self-consistent field calculations on the active site of endothiapepsin. The active site was modeled as a formic acid/formate anion moiety (representing the catalytic aspartates, Asp-32 and -215) and a bound water molecule. Residues Gly-34, Ser-35, Gly-217, and Thr-218, which all form hydrogen bonds to the active site, were modeled using formamide and methanol molecules. The water molecule, which is generally believed to function as the attacking nucleophile in catalysis, was allowed to bind to the active site in four distinct configurations. The geometry of each configuration was optimized using two basis sets (4-31G and 4-31G*). The results indicate that in the native enzyme the nucleophilic water is bound in a catalytically inert configuration. However, by rotating the carboxyl group of Asp-32 by about 90° the water molecule can be reorientated to attack the scissile bond of the substrate. A model of the bound enzyme-substrate complex was constructed from the crystal structure of a difluorostatone inhibitor complexed with endothiapepsin. This model suggests that the substrate itself initiates the reorientation of the nucleophilic water immediately prior to catalysis by forcing the carboxyl group of Asp-32 to rotate. The theoretical results predict that the active site of endothiapepsin undergoes a large distortion during substrate binding and this observation has been used to explain some of the kinetics results which have been reported for mutant aspartic proteinases.  相似文献   

12.
Hybrid quantum mechanical/molecular mechanical (QM/MM) calculations using restricted and unrestricted Hartree-Fock and B3LYP ab initio (QM) and Amber force field (MM), respectively, have been applied to study the catalytic site of papain in both free and substrate bonded forms. Ab initio geometry optimizations have been performed for the active site of papain and the N-methyl-acetamide (NMA)-papain complex within the molecular mechanical treatment of the protein environment. A covalent tetrahedral intermediate structure could be obtained only when the amide N atom of the substrate molecule was protonated through a proton transfer from the His-159 in the catalytic site. Our results support the previous assumption that a proton transfer from His-159 to the amide N atom of the substrate occurs prior to or concerted with the nucleophilic attack of the Cys-25 sulfur atom to the carbonyl group of the substrate. The electron correlation effect will reduce the proton transfer barrier. Therefore, this proton transfer can be easily observed in the B3LYP/6-31G* calculations. The HF/6-31G* method overestimates the reaction barrier against this proton transfer. The sulfur atom of Cys-25 and the imidazole ring of His-159 are found to be coplanar in the free form of the enzyme. However, the rotation of the imidazole ring of His-159 was observed during the formation of the tetrahedral intermediate. Without the papain environment, the coplanar thiolate-imidazolium ion pair RS-...ImH+ is much less stable than the neutral form of RSH....Im. Within the protein environment, however, the thiolate-imidazolium ion pair becomes more stable than its neutral form by 4.1 and 0.4 kcal/mol in HF/6-31G* and B3LYP/6-31G* calculations, respectively. The barrier of proton transfer from S-H group of Cys-25 to the imidazole ring of His-159 was reduced from 22.0 kcal/mol to 15.2 kcal/mol by the protein environment in HF/6-31G* calculations. This barrier is found to be much smaller (2.5 kcal/mol) in B3LYP/6-31G* calculations.  相似文献   

13.
Phosphorylation mediates the function of many proteins and enzymes. In the catalytic subunit of cAMP-dependent protein kinase, phosphorylation of Thr 197 in the activation loop strongly influences its catalytic activity. In order to provide theoretical understanding about this important regulatory process, classical molecular dynamics simulations and ab initio QM/MM calculations have been carried out on the wild-type PKA-Mg(2) ATP-substrate complex and its dephosphorylated mutant, T197A. It was found that pThr 197 not only facilitates the phosphoryl transfer reaction by stabilizing the transition state through electrostatic interactions but also strongly affects its essential protein dynamics as well as the active site conformation.  相似文献   

14.
Methylmalonyl-CoA mutase is an adenosylcobalamin-dependent enzyme that catalyzes the 1,2 rearrangement of methylmalonyl-CoA to succinyl-CoA. This reaction results in the interchange of a carbonyl-CoA group and a hydrogen atom on vicinal carbons. The crystal structure of the enzyme reveals the presence of an aromatic cluster of residues in the active site that includes His-244, Tyr-243, and Tyr-89 in the large subunit. Of these, His-244 is within hydrogen bonding distance to the carbonyl oxygen of the carbonyl-CoA moiety of the substrate. The location of these aromatic residues suggests a possible role for them in catalysis either in radical stabilization and/or by direct participation in one or more steps in the reaction. The mechanism by which the initially formed substrate radical isomerizes to the product radical during the rearrangement of methylmalonyl-CoA to succinyl-CoA is unknown. Ab initio molecular orbital theory calculations predict that partial proton transfer can contribute significantly to the lowering of the barrier for the rearrangement reaction. In this study, we report the kinetic characterization of the H244G mutant, which results in an acute sensitivity of the enzyme to oxygen, indicating the important role of this residue in radical stabilization. Mutation of His-244 leads to an approximately 300-fold lowering in the catalytic efficiency of the enzyme and loss of one of the two titratable pK(a) values that govern the activity of the wild type enzyme. These data suggest that protonation of His-244 increases the reaction rate in wild type enzyme and provides experimental support for ab initio molecular orbital theory calculations that predict rate enhancement of the rearrangement reaction by the interaction of the migrating group with a general acid. However, the magnitude of the rate enhancement is significantly lower than that predicted by the theoretical studies.  相似文献   

15.
We present an analysis of the electrostatic properties in the catalytic site of papain (EC 3.4.22.2), an archetype enzyme of the C1 cysteine proteinase family, and we investigate their possible role in the formation, stabilization and regulation of the Cys25((-))...His159((+)) catalytic ion pair. The electrostatic properties were computed using a reassociation method based in multicentered multipolar expansions obtained from ab initio quantum calculations of overlapping protein fragments. Solvent effects were introduced by coupling the use of multicentered multipolar expansions to two continuum boundary element methods to solve the Poisson and the linearized Poisson-Boltzmann equations. The electrostatic profile found in the proton transfer region of papain showed that this enzyme has a well-defined electrostatic environment to favor the formation and stabilization of the catalytic ion pair. The papain catalytic site electrostatic profile can be considered as an electrostatic fingerprint of the papain family with the following characteristics: (i) the presence of a net electric field highly aligned in the (Cys25)-SG-->(His159)-ND1 direction; (ii) the electrostatic profile has a saddle-point character; (iii) it is basically a local environmental effect. Furthermore, our analysis describes a possible regulatory mechanism (the E(SG-->ND1) attenuation effect) controlling the ion pair reactivity and permits to infer the Asp57 acidic residue as the most probable candidate to act as the electrostatic modulator.  相似文献   

16.
Oh KS  Cha SS  Kim DH  Cho HS  Ha NC  Choi G  Lee JY  Tarakeshwar P  Son HS  Choi KY  Oh BH  Kim KS 《Biochemistry》2000,39(45):13891-13896
Ketosteroid isomerase (KSI) is one of the most proficient enzymes catalyzing an allylic isomerization reaction at a diffusion-controlled rate. In this study of KSI, we have detailed the structures of its active site, the role of various catalytic residues, and have explained the origin of the its fast reactivity by carrying out a detailed investigation of the enzymatic reaction mechanism. This investigation included the X-ray determination of 15 crystal structures of two homologous enzymes in free and complexed states (with inhibitors) and extensive ab initio calculations of the interactions between the active sites and the reaction intermediates. The catalytic residues, through short strong hydrogen bonds, play the role of charge buffer to stabilize the negative charge built up on the intermediates in the course of the reaction. The hydrogen bond distances in the intermediate analogues are found to be about 0.2 A shorter in the product analogues both experimentally and theoretically.  相似文献   

17.
In this paper, the carbonic anhydrase II (CA II) enzyme active site is modeled using ab initio calculations and molecular dynamics simulations to examine a number of important issues for the enzyme function. It is found that the Zn2+ ion is dominantly tetrahedrally coordinated, which agrees with X-ray crystallographic studies. However, a transient five-fold coordination with an extra water molecule is also found. Studies of His64 conformations upon a change in the protonation states of the Zn-bound water and the His64 residue also confirm the results of an X-ray study which suggest that the His64 conformation is quite flexible. However, the degree of water solvation is found to affect this behavior. Water bridge formation between the Zn-bound water and the His64 residue was found to involve a free energy barrier of 2–3 kcal/mol and an average lifetime of several picoseconds, which supports the concept of a proton transfer mechanism through such a bridge. Mutations of various residues around the active site provide further insight into the corresponding experimental results and, in fact, suggest an important role for the solvent water molecules in the CA II catalytic mechanism. Proteins 33:119–134, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Ab initio molecular orbital methods in combination with DFT calculations were used to study the structural and thermodynamic properties of 17 complexes containing zinc cation and four first-shell ligands as models of active site of metalloenzymes (e.g. angiotensin converting enzyme, thermolysin). The geometry of the complexes was relaxed by complete optimization by ab initio molecular orbital methods at Hertree-Fock level with 3-21G* basis set. Following single point calculation with tight SCF criteria at the B3LYP level with 6-311+G(2d,p) basis set was used to calculate accurate interaction enthalpies. The structure and thermodynamics of optimized complexes are discussed from the point of view of their biological importance.  相似文献   

19.
Hypoxanthine (Hx) with specific (15)N labels has been used to probe hydrogen-bonding interactions with purine nucleoside phosphorylase (PNP) by NMR spectroscopy. Hx binds to human PNP as the N-7H tautomer, and the N-7H (1)H and (15)N chemical shifts are located at 13.9 and 156.5 ppm, respectively, similar to the solution values. In contrast, the (1)H and (15)N chemical shifts of N-1H in the PNP.Hx complex are shifted downfield by 3.5 and 7.5 ppm to 15.9 and 178.8 ppm, respectively, upon binding. Thus, hydrogen bonding at N-1H is stronger than at N-7H in the complex. Ab initio chemical shift calculations on model systems that simulate Hx in solution and bound to PNP are used to interpret the NMR data. The experimental N-7H chemical shift changes are caused by competing effects of two active site contacts. Hydrogen bonding of Glu201 to N-1H causes upfield shifts of the N-7H group, while the local hydrogen bond (C=O to N-7H from Asn243) causes downfield shifts. The observed N-7H chemical shift can be reproduced by a hydrogen bond distance approximately 0.13 A shorter (but within experimental error) of the experimental value found in the X-ray crystal structure of the bovine PNP.Hx complex. The combined use of NMR and ab initio chemical shift computational analysis provides a novel approach to understand enzyme-ligand interactions in PNP, a target for anticancer agents. This approach has the potential to become a high-resolution tool for structural determination.  相似文献   

20.
P T van Duijnen 《Enzyme》1986,36(1-2):93-100
In this paper the relevance of ab initio quantum mechanical calculations is briefly reviewed. A method to extend such calculations to the domain of solvent effects and the theoretical investigation of chemical reactions in the active site of a protein is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号