首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Factors Enhancing the Host-Cell Penetration of Toxoplasma gondii   总被引:7,自引:2,他引:5  
The penetration into HeLa cells of Toxoplasma gondii was studied with a cell culture technique. The influence on the rate of penetration and the number of penetrating Toxoplasma parasites was tested by use of preparations of disintegrated parasites mixed with test parasites. These preparations were found to contain factors enhancing the penetrating rate of the parasites. This effect was demonstrable by use of untreated parasites as well as parasites lacking active motility owing to a previous exposure to Formalin. The preparations of disintegrated parasites contained, in addition, components inhibitory to the penetration-enhancing factors. These inhibitory components were able to reduce the penetrating capacity of normal Toxoplasma parasites, suggesting that the studied enhancing factors may play a role in the natural process of penetration. The efficacy of various techniques for disintegration of Toxoplasma parasites was investigated for release of penetration-enhancing factors from Toxoplasma parasites. The methods used resemble those used for liberation of lysosomal enzymes. Reduced osmotic pressure was obviously not adequate for release of enhancing factors, whereas the freezing and thawing procedure, sonic treatment, and irradiation produced high yields. It was difficult to evaluate the effect of incubation at acid pH on release of enhancing activity, because the penetration-promoting factors seemed unstable on both the acid and the alkaline sides of pH 7.6.  相似文献   

2.
Fluorescence microscopy, using dyes which specifically label mitochondria, endoplasmic reticulum and the Golgi complex, and transmission electron microscopy, were used to analyze the changes which occur in the organization of these structures during interaction of Toxoplasma gondii with host cells. In uninfected cells the mitochondria are long filamentous structures which radiate from the nuclear region toward the cell periphery. After parasite penetration they become shorter and tend to concentrate around the parasite-containing vacuole (parasitophorous vacuole) located in the cytoplasm of the host cell. The mitochondria of extracellular parasites, but not of those located within the parasitophorous vacuole, were also stained by rhodamine 123. Labeling with DiOC6, which binds to elements of the endoplasmic reticulum, in association with transmission electron microscopy, revealed a concentration of this structure around the parasitophorous vacuole. The membrane lining this vacuole was also stained, suggesting that components of the endoplasmic reticulum are also incorporated into this membrane. The Golgi complex, as revealed by staining with NBD-ceramide and electron microscopy, maintains its perinuclear position throughout the evolution of the intracellular parasitism.  相似文献   

3.
The mode of entry of living trophozoites of Toxoplasma gondii (RH strain) into normal mouse peritoneal macrophage and HeLa cell monolayers was studied by phase-contrast microcinematography. The results have shown that Toxoplasma can enter into macrophages either by phagocytosis (Figs. 1 and 2) and/or by active penetration (Fig. 3). Only the latter process was observed with normally non-phagocytic HeLa cells (Fig. 4). During this process the parasites actively moved towards the host-cells by flexion and penetrated them always through their sharpest end. Active penetration was a rapid phenomenon (about 20 s at 37 degrees C) and was accompanied by a series of morphological changes, i.e., elongation of the anterior end, contraction and swelling of the parasite body. Contrasting with phagocytosis, toxoplasmas which had penetrated into the cell were not immediately isolated from the host-cytoplasm by a microscopically discernable vacuole. The nature of the process of penetration (pressure and/or perforation of the plasma membrane) is discussed.  相似文献   

4.
It has been recently shown that Trypanosoma cruzi trypomastigotes subvert a constitutive membrane repair mechanism to invade HeLa cells. Using a membrane extraction protocol and high-resolution microscopy, the HeLa cytoskeleton and T. cruzi parasites were imaged during the invasion process after 15 min and 45 min. Parasites were initially found under cells and were later observed in the cytoplasm. At later stages, parasite-driven protrusions with parallel filaments were observed, with trypomastigotes at their tips. We conclude that T. cruzi trypomastigotes induce deformations of the cortical actin cytoskeleton shortly after invasion, leading to the formation of pseudopod-like structures.  相似文献   

5.
We mutagenized RH delta hxgprt strain tachyzoites of Toxoplasma gondii using N-nitroso-N-ethylurea and analyzed 40 clonal isolates (of 3680 ENU mutants) that were unable to grow in cell culture at 40 degrees C. These isolates grew normally at 34 degrees C, but showed variable growth at temperatures between 34 and 39 degrees C. The inability to grow at 40 degrees C was also correlated with a loss of virulence in mice for those mutants examined. We further characterized the temperature-sensitive (ts) isolates using flow cytometry and propidium iodide staining and identified three types of cell cycle-related mutations. Regardless of temperature, in the isolates ts1C12, ts7B4, and ts7B10, the distribution of parasites with a haploid DNA content was substantially higher (congruent with 85%) than that observed for RH delta hxgprt (congruent with 60%). Four other isolates, ts4F6, ts6C11, ts8G10, and ts11F5, contained G1-related mutations, and in each case, the DNA distribution among parasites at the permissive temperature was similar to that of the parental strain, but at 40 degrees C only a single population containing a 1N nuclear DNA complement was evident. Furthermore, there was no evidence of nuclear division or cytokinesis at 40 degrees C, and these parasites demonstrated a distended cytoplasm typical of G1 arrest in other cell types. Finally, parasites of the ts11C9 mutant arrested in two near-equal populations with either 1N or 2N complements of nuclear DNA. All arrested ts11C9 parasites contained a single nucleus, and a major subfraction of the 2N population contained abnormal and incompletely formed daughters-indicating that the initiation of daughter formation can occur in the absence of nuclear division.  相似文献   

6.
UPTAKE OF MAMMALIAN CHROMOSOMES BY MAMMALIAN CELLS   总被引:2,自引:1,他引:1       下载免费PDF全文
Chromosomes isolated from mouse leukemia L1210 cells were taken up by mouse macrophages, HeLa cells, and rat embryo fibroblasts following simple exposure in vitro. The process, which resembles pinocytosis or phagocytosis, was traced by autoradiography of chromosomes prelabeled with thymidine-H3, and by staining techniques and phase contrast microscopy. During the first six hours, the uptake of chromosomes was restricted to the cytoplasm, but there was some evidence of penetration into the nucleus after 16 and 26 hours of exposure. Treatment of rat fibroblasts with glucose and insulin markedly enhanced the uptake of chromosomes, whereas iodoacetate inhibited their penetration.  相似文献   

7.
We documented the activity of cultured cells on time-lapse videotapes and then stained these identified cells with antibodies to actin and myosin. This experimental approach enabled us to directly correlate cellular activity with the distribution of cytoplasmic actin and myosin. When trypsinized HeLa cells spread onto a glass surface, the cortical cytoplasm was the most actively motile and random, bleb-like extensions (0.5-4.0 micrometer wide, 2-5 micrometer long) occurred over the entire surface until the cells started to spread. During spreading, ruffling membranes were found at the cell perimeter. The actin staining was found alone in the surface blebs and ruffles and together with myosin staining in the cortical cytoplasm at the bases of the blebs and ruffles. In well-spread, stationary HeLa cells most of the actin and myosin was found in stress fibers but there was also diffuse antiactin fluorescence in areas of motile cytoplasm such as leading lamellae and ruffling membranes. Similarly, all 22 of the rapidly translocating embryonic chick cells had only diffuse actin staining. Between these extremes were slow-moving HeLa cells, which had combinations of diffuse and fibrous antiactin and antimyosin staining. These results suggest that large actomyosin filament bundles are associated with nonmotile cytoplasm and that actively motile cytoplasm has a more diffuse distribution of these proteins.  相似文献   

8.
The comparative electron-microscopic study of early stages of the interaction of Y. pseudotuberculosis virulent strain (No. 282) with "professional" (macrophages) and "nonprofessional" (HeLa cells) phagocytes has been carried out. The character of the intimate mechanism of this interaction has been found to be essentially different. The common feature for both systems is the adsorption of bacteria and their penetration into cells due to phagocytosis. But the subsequent fate of Y. pseudotuberculosis is different. In HeLa cells they are isolated from the cytoplasm by multilayer membrane structures, thus remaining morphologically intact. In macrophages the destruction of the microbe in phagolysosomes occurs.  相似文献   

9.
The protozoan parasite Toxoplasma gondii infects its host cells through an active mechanism. In this work, we obtained evidence that host cells also play a fundamental role during the infection process. We found that previous incubation of the host cells, but not the parasites, with Dynasore, a small molecule that inhibits dynamin GTPase activity, markedly reduced the penetration of T. gondii tachyzoites into LLC-MK2 cells. In contrast, parasite adhesion to the host cell surface increased, as observed both by light and electron microscopy. Intriguingly, the few parasites internalized by Dynasore-treated cells remained in vacuoles located at the periphery of the cell, in contrast to the perinuclear localization seen in the control.  相似文献   

10.
Huang CY  Lu TY  Bair CH  Chang YS  Jwo JK  Chang W 《Journal of virology》2008,82(16):7988-7999
Vaccinia virus is a large DNA virus that infects many cell cultures in vitro and animal species in vivo. Although it has been used widely as a vaccine, its cell entry pathway remains unclear. In this study, we showed that vaccinia virus intracellular mature virions bound to the filopodia of HeLa cells and moved toward the cell body and entered the cell through an endocytic route that required a dynamin-mediated pathway but not a clathrin- or caveola-mediated pathway. Moreover, virus penetration required a novel cellular protein, vaccinia virus penetration factor (VPEF). VPEF was detected on cell surface lipid rafts and on vesicle-like structures in the cytoplasm. Both vaccinia virus and dextran transiently colocalized with VPEF, and, importantly, knockdown of VPEF expression blocked vaccinia virus penetration as well as intracellular transport of dextran, suggesting that VPEF mediates vaccinia virus entry through a fluid uptake endocytosis process in HeLa cells. Intracellular VPEF-containing vesicles did not colocalize with Rab5a or caveolin but partially colocalized with Rab11, supporting the idea that VPEF plays a role in vesicle trafficking and recycling in HeLa cells. In summary, this study characterized the mechanism by which vaccinia virus enters HeLa cells and identified a cellular factor, VPEF, that is exploited by vaccinia virus for cell entry through fluid phase endocytosis.  相似文献   

11.
A technique is described for quantifying the in vitro penetration of vertebrate cells by trypomastigotes of Trypanosoma cruzi. It was found that the parasites are distributed among host cells in a manner described by the negative binomial distribution. The rate at which trypomastigotes penetrate bovine embryonic skeletal muscle cells (BESM) decreased exponentially in time in this system. The rate of the exponential decrease was dependent upon the concentration of parasites, being faster for more concentrated suspensions of trypomastigotes. A significantly lower penetration rate of canine kidney and HeLa cells was found when compared to bovine embryonic skeletal muscle cells. Within a single population of BESM cells, the smaller cells were penetrated more rapidly than the larger ones per unit cell area.  相似文献   

12.
The phylum Apicomplexa includes parasites responsible for global scourges such as malaria, cryptosporidiosis, and toxoplasmosis. Parasites in this phylum reproduce inside the cells of their hosts, making invasion of host cells an essential step of their life cycle. Characterizing the stages of host-cell invasion, has traditionally involved tedious microscopic observations of individual parasites over time. As an alternative, we introduce the use of compartment models for interpreting data collected from snapshots of synchronized populations of invading parasites. Parameters of the model are estimated via a maximum negative log-likelihood principle. Estimated parameter values and their 95% confidence intervals (95% CI), are consistent with reported observations of individual parasites. For RH strain parasites, our model yields that: (1) penetration of the host-cell plasma membrane takes 26s (95% CI: 22-30s); (2) parasites that ultimately invade, remain attached three times longer than parasites that eventually detach from the host cells, and (3) 25% (95% CI: 19-33%) of parasites invade while 75% (95% CI: 67-81%) eventually detach from their host cells without progressing to invasion. A key feature of the model is the incorporation of invasion stages that cannot be directly observed. This allows us to characterize the phenomenon of parasite detachment from host cells. The properties of this phenomenon would be difficult to quantify without a mathematical model. We conclude that mathematical modeling provides a powerful new tool for characterizing the stages of host-cell invasion by intracellular parasites.  相似文献   

13.
The apicomplexan parasite Toxoplasma gondii is able to suppress nitric oxide production in activated macrophages. A screen of over 6000 T. gondii insertional mutants identified two clones, which were consistently unable to suppress nitric oxide production from activated macrophages. One strain, called 89B7, grew at the same rate as wild‐type parasites in naïve macrophages, but unlike wild type, the mutant was degraded in activated macrophages. This degradation was marked by a reduction in the number of parasites within vacuoles over time, the loss of GRA4 and SAG1 protein staining by immunofluorescence assay, and the vesiculation and breakdown of the internal parasite ultrastructure by electron microscopy. The mutagenesis plasmid in the 89B7 clone disrupts the promoter of a 3.4 kb mRNA that encodes a predicted 68 kDa protein with a cleavable signal peptide and a patatin‐like phospholipase domain. Genetic complementation with the genomic locus of this patatin‐like protein restores the parasites ability to suppress nitric oxide and replicate in activated macrophages. A haemagglutinin‐tagged version of this patatin‐like protein shows punctate localization into atypical T. gondii structures within the parasite. This is the first study that defines a specific gene product that is needed for parasite survival in activated but not naïve macrophages.  相似文献   

14.
Migration of Toxoplasma gondii across biological barriers   总被引:7,自引:0,他引:7  
The molecular mechanisms underlying migration of pathogens across biological barriers remain poorly characterized. Following oral infection, the apicomplexan parasite Toxoplasma gondii actively crosses non-permissive biological barriers such as the intestine, the blood-brain barrier and the placenta, thereby gaining access to tissues where it causes severe pathology. Recently, enhanced migration was found to be associated with virulent strains of Toxoplasma, suggesting that this phenotype contributes to pathogenesis. The migratory machinery appears to be morphologically and functionally well conserved within the phylum of apicomplexan parasites, however, the mechanisms for cellular traffic to breach biological barriers remain to be elucidated. As penetration of host tissue is a prerequisite for the establishment of infections by most apicomplexan parasites, understanding parasite migration is crucial for the development of new approaches to combat disease.  相似文献   

15.
SYNOPSIS.
The reproduction of Toxoplasma gondii RH-strain in vertebrate cells was studied in a controlled-environment culture system. The lag period before reproduction and the doubling time of individual parasites were determined using a least-squares linear regression method of analysis which does not artificially constrain the data. In the majority of cases, the time intercept of the linear regression line was either zero, implying the lack of a lag phase before reproduction, or negative, implying the parasite had completed part of its reproductive cycle before entering the host cell. The mean doubling time of T. gondii is 10.9 h in bovine embryo skeletal muscle cells and 8.3 h in HeLa cells. This difference is not significant at the 5% level. The population doubling times of mouse-derived parasites is best described by a gamma distribution.  相似文献   

16.
Apicomplexan parasites actively secrete proteins at their apical pole as part of the host cell invasion process. The adhesive micronemal proteins are involved in the recognition of host cell receptors. Redistribution of these receptor-ligand complexes toward the posterior pole of the parasites is powered by the actomyosin system of the parasite and is presumed to drive parasite gliding motility and host cell penetration. The microneme protein protease termed MPP1 is responsible for the removal of the C-terminal domain of TgMIC2 and for shedding of the protein during invasion. In this study, we used site-specific mutagenesis to determine the amino acids essential for this cleavage to occur. Mapping of the cleavage site on TgMIC6 established that this processing occurs within the membrane-spanning domain, at a site that is conserved throughout all apicomplexan microneme proteins. The fusion of the surface antigen SAG1 with these transmembrane domains excluded any significant role for the ectodomain in the cleavage site recognition and provided evidence that MPP1 is constitutively active at the surface of the parasites, ready to sustain invasion at any time.  相似文献   

17.
The reproduction of Toxoplasma gondii RH-strain in vertebrate cells was studied in a controlled-environment culture system. The lag period before reproduction and the doubling time of individual parasites were determined using a least-squares linear regression method of analysis which does not artificially constrain the data. In the majority of cases, the time intercept of the linear regression line was either zero, implying the lack of a lag phase before reproduction, or negative, implying the parasite had completed part of its reproductive cycle before entering the host cell. The mean doubling time of T. gondii is 10.9 h in bovine embryo skeletal muscle cells and 8.3 h in HeLa cells. This difference is not significant at the 5% level. The population doubling times of mouse-derived parasites is best described by a gamma distribution.  相似文献   

18.
19.
Anti-human galactosyltransferase (E.C. 2.4.1.22) antibodies were elicited in rabbits and purified on a galactosyltransferase-agarose column. Purified antibodies were used to localize galactosyltransferase in acetone-fixed HeLa cells and human lung fibroblasts. Both protein A-peroxidase developed with 3-amino 9-ethylcarbazole and swine anti-rabbit IgG-fluorescein isothiocyanate served to detect binding of anti-galactosyltransferase antibodies. In cells of confluent cultures, anti-galactosyltransferase staining appeared as a concise triangular structure in the juxtanuclear region with one angle oriented toward the bulk of the cytoplasm. The stained structure appeared as a dense cap on the nucleus in HeLa cells and as a more extended granular structure in fibroblasts. In cells of sparse cultures, specific anti-galactosyltransferase staining appeared in both HeLa cells and fibroblasts as a granular, extended structure, which was occasionally perinuclear. There was no evidence of cell surface localization of galactosyltransferase by light microscopy. The positively stained structures are interpreted to be part of the Golgi complex.  相似文献   

20.
Toxoplasma gondii-like schizonts in the tracheal epithelium of a cat   总被引:1,自引:0,他引:1  
Toxoplasma gondii-like schizonts were found in tracheal epithelium of an 8-yr-old male cat. The parasites were located in parasitophorous vacuoles within the host cell cytoplasm, divided by schizogony, contained periodic acid-Schiff-positive granules, and reacted with anti-T. gondii serum but not with anti-Neospora caninum serum. Mature schizonts were 7.0 x 5.9 microns (5-10 x 4-10 microns; n = 22) and contained 4-16 merozoites. The merozoites were approximately 5 x 1 microns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号