首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small polydisperse circular (spc) DNA was isolated and cloned, using BglII from Chinese hamster ovary (CHO) cells. The properties of 47 clones containing at least 43 different BglII fragments are reported. The majority of the clones probably contain entire sequences from individual spcDNA molecules. Most of the clones were homologous to sequences in CHO cell chromosomal DNA, and many were also homologous to mouse LMTK- cell chromosomal sequences. The majority of homologous CHO cell chromosomal sequences were repetitive, although a few may be single copy. Only a small fraction of cloned spcDNA molecules were present in every cell; most occurred less frequently than once in 15 cells. Localization studies indicated that at least a portion of spcDNA is associated with the nucleus in CHO cells.  相似文献   

2.
We have determined the nucleotide sequence of ten 240 bp repeated sequences of the DNA intergenic spacer present in circular DNA molecules purified from D melanogaster embryos. No significant difference was found with the sequence of the chromosomal units. This suggests that most of the circular molecules homologous to the 240 bp repeats are generated by homologous recombination between adjacent chromosomal units.  相似文献   

3.
Summary Restriction fragments from the fraction of small polydisperse circular DNA (spcDNA) were cloned in pBR322. The spcDNA was prepared from cell cultures derived from an angiofibroma of a patient with tuberous sclerosis (TS). Such cultures have been shown previously to contain increased amounts of spcDNA. Four cloned spcDNA fragments containing single-copy sequences were chosen to characterize the homologous chromosomal DNA segments by restriction analysis. When used as hybridization probes, these four fragments generate well-defined nonvariable patterns in the chromosomal DNA from healthy donors. The restriction patterns obtained with one of the fragments (D-C4) can best be interpreted by assuming the presence of two copies of the homologous sequences in chromosomal DNA. A second sequence, A-B4, occurs at least 30–50 times in the haploid human genome. In both cases the duplicated regions span relatively large segments of DNA.  相似文献   

4.
5.
6.
One characteristic of genomic plasticity is the presence of extrachromosomal circular DNA (eccDNA). High levels of eccDNA are associated with genomic instability, exposure to carcinogens and aging. We have recently reported developmentally regulated formation of eccDNA that occurs preferentially in pre-blastula Xenopus laevis embryos. Multimers of tandemly repeated sequences were over-represented in the circle population while dispersed sequences were not detected, indicating that circles were not formed at random from any chromosomal sequence. Here we present detailed mechanistic studies of eccDNA formation in a cell-free system derived from Xenopus egg extracts. We show that naked chromosomal DNA from sperm or somatic tissues serves as a substrate for direct tandem repeat circle formation. Moreover, a recombinant bacterial tandem repeat can generate eccDNA in the extract through a de novo mechanism which is independent of DNA replication. These data suggest that the presence of a high level of any direct tandem repeat can confer on DNA the ability to be converted into circular multimers in the early embryo irrespective of its sequence and that homologous recombination is involved in this process.  相似文献   

7.
A. S. Waldman 《Genetics》1994,136(2):597-605
Mouse LTK(-) cells were transfected with a pair of defective Herpes simplex virus thymidine kinase (tk) genes. One tk gene had an 8-bp insertion mutation while the second gene had a 100-bp inversion. Extrachromosomal homologous recombination leading to the reconstruction of a functional tk gene was monitored by selecting for tk positive cells using medium supplemented with hypoxanthine/aminopterin/thymidine. To assess whether the search for homology may be a rate-limiting step of recombination, we asked whether the presence of an excess number of copies of a tk gene possessing both the insertion and inversion mutations could inhibit recombination between the singly mutated tk genes. Effective competitive inhibition would require that homology searching (homologous pairing) occur rapidly and efficiently. We cotransfected plasmid constructs containing the singly mutated genes in the presence or absence of competitor sequences in various combinations of linear or circular forms. We observed effective inhibition by the competitor DNA in six of the seven combinations studied. A lack of inhibition was observed only when the insertion mutant gene was cleaved within the insertion mutation and cotransfected with the two other molecules in circular form. Additional experiments suggested that homologous interactions between two DNA sequences may compete in trans with recombination between two other sequences. We conclude that homology searching is not a rate-limiting step of extrachromosomal recombination in mammalian cells. Additionally, we speculate that a limiting factor is involved in a recombination step following homologous pairing and has a high affinity for DNA termini.  相似文献   

8.
Discretely sized molecules of small circular DNAs in African green monkey kidney (BSC-1) cells contain nucleotide sequences homologous to the KpnI family of long interspersed repetitive nucleotide sequences. The size distribution of these KpnI family-containing circular DNAs differs markedly from those of BSC-1 cell circular DNAs containing either the Alu family of short interspersed nucleotide sequences or the alpha-satellite family of tandemly repeated sequences. The structures of several cloned, apparently whole, KpnI family-related circular DNAs of varying sizes were analyzed and compared with a compilation of chromosomal KpnI sequences. In general, it was found that the cloned DNAs all contained only KpnI sequences, and that the recombination events given rise to them did not involve any noticeable gain of nucleotides.  相似文献   

9.
10.
Extrachromosomal circular DNA molecules are associated with genomic instability, and circles containing inverted repeats were suggested to be the early amplification products. Here we present for the first time the use of neutral-neutral two-dimensional (2D) gel electrophoresis as a technique for the identification, isolation, and characterization of heterogeneous populations of circular molecules. Using this technique, we demonstrated that in N-methyl-N'-nitro-N-nitrosoguanidine-treated simian virus 40-transformed Chinese hamster cells (CO60 cells), the viral sequences are amplified as circular molecules of various sizes. The supercoiled circular fraction was isolated and was shown to contain molecules with inverted repeats. 2D gel analysis of extrachromosomal DNA from CHO cells revealed circular molecules containing highly repetitive DNA which are similar in size to the simian virus 40-amplified molecules. Moreover, enhancement of the amount of circular DNA was observed upon N-methyl-N'-nitro-N-nitrosoguanidine treatment of CHO cells. The implications of these findings regarding the processes of gene amplification and genomic instability and the possible use of the 2D gel technique to study these phenomena are discussed.  相似文献   

11.
Inversion and circularization of the varicella-zoster virus genome.   总被引:5,自引:5,他引:0       下载免费PDF全文
The genome of varicella-zoster virus (VZV) is a linear, double-stranded molecule of DNA composed of a long (L) region covalently linked to a short (S) region. The S region is capable of inverting relative to a fixed orientation of the L region, giving rise to two equimolar populations. We have investigated other forms of the VZV genome which are present in infected cells and packaged into nucleocapsids. That a small proportion of nucleocapsid DNA molecules also possess inverted L regions has been verified by the identification of submolar restriction fragments corresponding to novel joints and novel ends generated by such an inversion. The presence of circular molecules has been investigated by agarose gel electrophoresis. Bands corresponding to circular forms were present in small amounts in both VZV-infected cell DNA and nucleocapsid DNA. Southern blot analysis verified that these bands contained VZV sequences. We therefore conclude that the VZV genome may occasionally contain an inverted L region or exist in a circular configuration.  相似文献   

12.
Summary Transformation of Streptococcus sanguis (Challis) by antibiotic resistance plasmids has shown that (a) competente developed with identical kinetics for chromosomal and plasmid DNA; (b) dependence of transformant yield on plasmid DNA concentration was second order; (c) open circular plasmid DNA transformed Challis, although at reduced frequency; (d) linearization of plasmid DNA by restriction enzymes cutting at unique sites inactivated the transforming capacity; (e) transforming activity was restored when linear plasmid molecules generated by different restriction enzymes were mixed; (f) restoration of transforming activity depended on the distance between the linearizing cuts, i.e. on the presence of sufficiently long overlapping homologous sequences; (g) when linear deletion mutants were mixed with linear parental plasmids the smaller plasmid was restored with significantly higher frequency.Based on these data, a model for plasmid transformation of Challis is proposed according to which circular plasmid is linearized during binding and uptake. One DNA strand enters the cell and restoration of circular plasmids inside the cell occurs by annealing of complementary single strands from two different donor molecules. Implications of this model for recombinant DNA experiments in streptococci are discussed.  相似文献   

13.
The polydisperse circular deoxyribonucleic acid (DNA) molecules which comprise up to 30% of the total extractable DNA of Bacillus megaterium strain 216 have been purified and partially characterized. Banding in cesium chlorideethidium bromide by "gradient relaxation" in a fixed-angle rotor provided good resolution of circular and chromosomal DNAs for preparative separations. Renaturation studies on purified circular DNA failed to reveal a rapidly renaturing fraction, and DNA-DNA hybridization studies indicated that the majority of the chromosomal nucleotide sequences are represented in the heterogeneous-size population of circular molecules. It is concluded that the circular DNA of B. megaterium does not represent typical bacterial plasmid DNA. The possibility that the circular DNA molecules are the result of the expression of a defective bacteriophage is discussed.  相似文献   

14.
Extrachromosomal circular DNA (eccDNA) is one characteristic of the plasticity of the eukaryotic genome. It was found in various non-plant organisms from yeast to humans. EccDNA is heterogeneous in size and contains sequences derived primarily from repetitive chromosomal DNA. Here, we report the occurrence of eccDNA in small and large genome plant species, as identified using two-dimensional gel electrophoresis. We show that eccDNA is readily detected in both Arabidopsis thaliana and Brachycome dichromosomatica , reflecting a normal phenomenon that occurs in wild-type plants. The size of plant eccDNA ranges from > 2 kb to < 20 kb, which is similar to the sizes found in other organisms. These DNA molecules correspond to 5S ribosomal DNA (rDNA), non-coding chromosomal high-copy tandem repeats and telomeric DNA of both species. Circular multimers of the repeating unit of 5S rDNA were identified in both species. In addition, similar multimers were also demonstrated with the B. dichromosomatica repetitive element Bdm29. Such circular multimers of tandem repeats were found in animal models, suggesting a common mechanism for eccDNA formation among eukaryotes. This mechanism may involve looping-out via intrachromosomal homologous recombination. The implications of these results on genome plasticity and evolutionary processes are discussed.  相似文献   

15.
K Suzuki  K Iwata  K Yoshida 《DNA research》2001,8(4):141-152
The phytopathogenic bacterium Agrobacterium tumefaciens is unique in that it possesses both linear and circular DNA chromosomes in addition to a plant-tumor-inducing (Ti) plasmid. We analyzed the two chromosomal DNA molecules in strain MAFF301001, whose Ti plasmid has already been sequenced completely. Physical maps of the chromosomal DNAs were constructed by Southern hybridization experiments using Pme I and Swa I fragments and short fragments bridging the Swa I fragments with special care to avoid any missing fragment. Hybridization with 16S rDNA probe showed one rDNA locus on the linear chromosome and two loci on the circular chromosome. For this bacterium to be pathogenic, not only Ti plasmid but also chromosomal genes are required. The chromosomal virulence (chv) genes (chvA, chvB, chvD, chvE, chvG, chvH, and chvI) and the chromosomal genes affecting the virulence [acvB, pgm(exoC), glgP, miaA, and ros] were successfully mapped onto 5 different regions in the chromosomal physical maps. These chv genes and the chromosomal genes affecting the virulence other than pgm and glgP were found on the circular chromosome, whereas the pgm and glgP genes were located on the linear chromosome. In contrast to the large terminal inverted repeats of Streptomyces linear chromosomal DNA, no hybridization signal was detected between left and right terminal fragments of the linear A. tumefaciens chromosome. Quantitative analysis of DNA fragments indicated that the copy numbers of the two chromosomal DNAs and the Ti plasmid are identical.  相似文献   

16.
17.
D M Xu  D Stoltz 《Journal of virology》1991,65(12):6693-6704
Evidence is presented in support of a chromosomal location for sequences homologous to polydnavirus DNA in the ichneumonid parasitoid Hyposoter fugitivus. In this study, four different viral genome segments were cloned and used as probes against genomic DNA extracted from male parasitoids and digested with a variety of restriction enzymes. Each probe typically identified a single off-size fragment (OSF) in the case of enzymes not cutting viral genome segments, while two OSFs were generated by enzymes cutting at one and two sites. While extra OSFs were occasionally observed, these were invariably found to be due to the presence of polymorphic restriction sites in flanking chromosomal DNA. Analysis of these data suggests that a single, stable chromosomal locus exists for sequences homologous to each viral genome segment; the data also indicate that viral and cognate parasitoid genomic DNAs are largely if not entirely colinear.  相似文献   

18.
Homologous recombination is an important DNA repair mechanism in vegetative cells. During the repair of double-strand breaks, genetic information is transferred between the interacting DNA sequences (gene conversion). This event is often accompanied by a reciprocal exchange between the homologous molecules, resulting in crossing over. The repair of DNA damage by homologous recombination with repeated sequences dispersed throughout the genome might result in chromosomal aberrations or in the inactivation of genes. It is therefore important to understand how the suitable homologous partner for recombination is chosen. We have developed a system in the yeast Saccharomyces cerevisiae that can monitor the fate of a chromosomal double-strand break without the need to select for recombinants. The broken chromosome is efficiently repaired by recombination with one of two potential partners located elsewhere in the genome. One of the partners has homology to the broken ends of the chromosome, whereas the other is homologous to sequences distant from the break. Surprisingly, a large proportion of the repair is carried out by recombination involving the sequences distant from the broken ends. This repair is very efficient, despite the fact that it requires the processing of a large chromosomal region flanking the break. Our results imply that the homology search involves extensive regions of the broken chromosome and is not carried out exclusively by sequences adjacent to the double-strand break. We show that the mechanism that governs the choice of homologous partners is affected by the length and sequence divergence of the interacting partners, as well as by mutations in the mismatch repair genes. We present a model to explain how the suitable homologous partner is chosen during recombinational repair. The model provides a mechanism that may guard the integrity of the genome by preventing recombination between dispersed repeated sequences.  相似文献   

19.
Genome analysis of Treponema zioleckii proved that, in this bacterium, besides chromosomal DNA, a relatively small extrachromosomal DNA element is present. This element was shown to be a double-stranded circular plasmid DNA of approximately 7 kbp; it was designated as pKT. The plasmid was characterized by molecular and bioinformatic analysis. No pKT homologous DNA sequences were detected in other rumen Treponema strains. The overall G+C content of the pKT plasmid is approximately 56 %, which is higher than in other Treponema plasmids or genomes. The Rep module of the pKT plasmid consisting of the rep gene and the region of repeats was identified within a 1.6-kbp fragment. The putative rep gene encodes the replication protein belonging to the pfam04796 RepA_C family of proteins with the highest similarity (25 % within 249 amino acids) to the RepA protein from the green sulfur bacterium Prosthecochloris aestuarii.  相似文献   

20.
Chinese hamster ovary (CHO) cells have frequently been used in biotechnology as a mammalian host cell platform for expressing genes of interest. Previously, we constructed a detailed physical chromosomal map of the CHO DG44 cell line by fluorescence in situ hybridization (FISH) imaging using 303 bacterial artificial chromosome (BAC) clones as hybridization probes (BAC-FISH). BAC-FISH results revealed that the two longest chromosomes were completely paired. However, other chromosomes featured partial deletions or rearrangements. In this study, we determined the end sequences of 303 BAC clones (BAC end sequences), which were used for BAC-FISH probes. Among 606 BAC-end sequences (BESs) (forward and reverse ends), 558 could be determined. We performed a comparison between all determined BESs and mouse genome sequences using NCBI BLAST. Among these 558 BESs, 465 showed high homology to mouse chromosomal sequences. We analyzed the locations of these BACs in chromosomes of the CHO DG44 cell line using a physical chromosomal map. From the obtained results, we investigated the regional similarities among CHO chromosomes (A–T) and mouse chromosomes (1–19 and sex) about 217 BESs (46.7% of 465 high homologous BESs). Twenty-three specific narrow regions in 13 chromosomes of the CHO DG44 cell line showed high homology to mouse chromosomes, but most of other regions did not show significant correlations with the mouse genome. These results contribute to accurate alignments of chromosomes of Chinese hamster and its genome sequence, analysis of chromosomal instability in CHO cells, and the development of target locations for gene and/or genome editing techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号