首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two proteoglycan fractions, PCS-H and PCS-L, have previously been isolated from 4 M guanidine HCl extract of embryonic chick cartilages. This communication reports further studies with PCS-L indicating that this fraction contains several different forms, of which one differs from hitherto known cartilage proteoglycans in 1) markedly lower buoyant density, 2) susceptibility to reduction with 2-mercaptoethanol, 3) aggregate-forming ability in 4 M guanidine HCl, and 4) presence of dermatan sulfate-chondroitin sulfate copolymer chains. Also isolated from the PCS-L fraction is a keratan sulfate-rich proteoglycan which represents the smallest molecular size species in cartilage proteoglycan populations.  相似文献   

2.
1. Proteoglycan was isolated from growth cartilage of normal and rachitic chicks. 2. The proteoglycan from normal cartilage showed differences in chemical composition and physical properties from a comparable fraction isolated from bovine nasal cartilage. 3. The proteoglycan from rachitic-chick cartilage was of smaller size than tis normal counterpart, though of similar average chemical composition. 4. Differences between proteoglycan from normal and rachitic cartilages can be explained in terms of limited proteolytic cleavage.  相似文献   

3.
4.
Sulfated proteoglycans of the dorsal skin of 8.5-day-old chick embryos have been characterized in terms of their extractability from the tissue, solubility, and sedimentation and chromatographic behavior. The proteoglycans described in this communication are those that remain soluble after dialysis against 0.5 m NaCl. Two chondroitin sulfate proteoglycans (PGCS-A and PGCS-C) and a heparan sulfate proteoglycan (PGHS) have been identified. PGCS-A is the only proteoglycan found in the medium in which the skins were cultured. Under associative conditions (0.4 M guanidine-HCl) PGCS-A and PGHS are extracted. The dissociative solvents (4 M guanidine-HCl) extract more PGCS-A and PGCS-C. PGCS-C has been shown to interact with hyaluronic acid to form aggregates. These proteoglycans have densities ranging from 1.49 to at least 1.59 g/ml. In contrast cartilage proteoglycans that can aggregate with hyaluronic acid have a density of at least 1.59 g/ml. It was not possible to determine if the PGCS-C aggregates exist in vivo.  相似文献   

5.
Bovine nasal cartilage was extracted with 0.5 M LaCl3 and the extract then diluted with nine volumes of water. The resulting precipitated (PLaCl3) contained the proteoglycan subunits, together with minor protein components, but was essentially free from hyaluronic acid. The properties of PLaCl3 were investigated by chemical analysis, electrophoresis, viscometry and analytical ultracentrifugation, and the results compared with those for proteoglycan obtained by caesium chloride density gradient centrifugation of 2 M CaCl2 cartilage extracts. Proteoglycan subunits (A1D1) prepared from PLaCl3 showed identical properties to those obtained from other high ionic strength cartilage extracts.  相似文献   

6.
Perlecan is a modular heparan sulphate and/or chondroitin sulphate substituted proteoglycan of basement membrane, vascular tissues and cartilage. Perlecan acts as a low affinity co-receptor for fibroblast growth factors 1, 2, 7, 9, binds connective tissue growth factor and co-ordinates chondrogenesis, endochondral ossification and vascular remodelling during skeletal development; however, relatively little is known of its distribution in these tissues during ageing and development. The aim of the present study was to immunolocalise perlecan in the articular and epiphyseal growth plate cartilages of stifle joints in 2-day to 8-year-old pedigree merino sheep. Perlecan was prominent pericellularly in the stifle joint cartilages at all age points and also present in the inter-territorial matrix of the newborn to 19-month-old cartilage specimens. Aggrecan was part pericellular, but predominantly an extracellular proteoglycan. Perlecan was a prominent component of the long bone growth plates and displayed a pericellular as well as a strong ECM distribution pattern; this may indicate a so far unrecognised role for perlecan in the mineralisation of hypertrophic cartilage. A significant age dependant decline in cell number and perlecan levels was evident in the hyaline and growth plate cartilages. The prominent pericellular distribution of perlecan observed indicates potential roles in cell-matrix communication in cartilage, consistent with growth factor signalling, cellular proliferation and tissue development.  相似文献   

7.
The effect of altered mechanical stress on the metabolism of sheep articular cartilage has been investigated. A simple experimental model involving the immobilisation of a single sheep foreleg was used to study the effect of increased or decreased functional demand on the chemical composition of, and the incorporation of labelled acetate into, the proteoglycans of sheep articular cartilage. By immobilisation of one of the sheep forelegs, mechanical stress is removed from that particular joint, while increased stress is placed on the other foreleg. The load distribution about the two hind legs remains essentially the same. After a 4-week immobilisation period there was a significant increase in the hexuronic acid content of the cartilage from the loadbearing ankle joint, and a corresponding decrease in the hexuronic acid content of the non-loadbearing joint cartilage. Hexosamine analyses of the cartilage from each joint showed that the major chemical occurred in the chondroitin sulphate fraction. From analyses of the extracted and isolated proteoglycans from each experimental joint it was evident that there was a significant decrease in the molecular weight of the proteoglycan from the non-loadbearing joint. In vitro studies showed increased incorporation of labelled acetate into the chondroitin sulphate fraction from the loadbearing joint but a corresponding decreased incorporation into the non-loadbearing immobilised joint cartilage. These results suggest that the changes observed in the chemical composition of the cartilage from the loadbearing and non-loadbearing joints may be accounted for in part by changes in the biosynthesis of the cartilage proteoglycan in response to altered functional demand.  相似文献   

8.
Proteoglycan monomer (D1) and aggregate (A1) preparations were isolated from 4 M guanidinium chloride extracts of the Swarm rat chondrosarcoma. When EDTA, 6-aminohexanoic acid, and benzamidine were present in the solutions, the D1 preparation contained a single component (SO = 23 S), and the A1 preparation contained 30% monomer (SO = 23 S) and 70 percent aggregate (SO = 111 S). In the absence of EDTA, 6-aminohexanoic acid, and benzamidine, the A1 preparations contained only small proteoglycan fragments, indicating that extensive enzymatic degradation had occurred. The composition of the proteoglycan monomer was different from that of proteoglycan monomer preparations from normal hyaline cartilages in that it did not contain keratan sulfate and chondroitin 6-sulfate; only chondroitin 4-sulfate was found. The A1 preparation from the chondrosarcoma contained only one link protein, which was like the smaller (molecular weight of 40,000) of the two link proteins present in A1 preparations from bovine nasal cartilage. When the A1 preparation from the chondrosarcoma was treated with chondroitinase ABC and trypsin and the digest was chromatographed on Sepharose 2B, a complex was isolated which contained the link protein and the segments of the protein core from the hyaluronic acid-binding region of the proteoglycan molecules.  相似文献   

9.
The relationship between cartilage thickness and proteoglycan extractability was examined. Bovine nasal cartilage slices (20, 100, and 500 micron thicknesses) were extracted with low-ionic-strength buffer and 4 M guanidine hydrochloride. The extractability of proteoglycans with both solutions depended on slice thickness. Thinner slices yielded greater amounts of proteoglycans. Sixty-three percent of the total cartilage uronic acid was extracted from 20-micron cartilage slices with low-ionic-strength buffer while only 7% was extracted for 500-micron slices. Each fivefold increase in cartilage surface area led to a threefold increase in uronic acid extraction with low-ionic-strength buffer. Extraction of proteoglycan aggregates was directly proportional to the cartilage surface area whereas extraction of non-aggregated proteoglycans, per surface area, increased with increasing cartilage thickness. These data are consistent with the hypothesis that proteoglycan aggregates are extracted mainly from the cartilage surface while non-aggregated proteoglycans diffuse from deep within the cartilage. Extraction with low-ionic-strength buffer occurred in two phases. There was an initial rapid loss of proteoglycans in which 1/3 to 1/2 of all proteoglycans eluting over 6 days were extracted during the first 30 min. Subsequent extraction was much slower with decreasing amounts extracted on each consecutive day. The initial rapid loss of proteoglycans was probably due to the steep osmotic-pressure gradient existing when the cartilage was placed in the low-ionic-strength buffer.  相似文献   

10.
Kidneys were perfused with [35S]sulfate at 4 h in vitro to radiolabel sulfated proteoglycans. Glomeruli were isolated from the labeled kidneys, and purified fractions of glomerular basement membrane (GBM) were prepared therefrom. Proteoglycans were extracted from GBM fractions by use of 4 M guanidine-HCl at 4 degrees C in the presence of protease inhibitors. The efficiency of extraction was approximately 55% based on 35S radioactivity. The extracted proteoglycans were characterized by gel-filtration chromatography (before and after degradative treatments) and by their behavior in dissociative CsCl gradients. A single peak of proteoglycans with an Mr of 130,000 (based on cartilage proteoglycan standards) was obtained on Sepharose CL-4B or CL-6B. Approximately 85% of the total proteoglycans were susceptible to nitrous acid oxidation (which degrades heparan sulfates), and approximately 15% were susceptible to digestion with chondroitinase ABC (degrades chondroitin-4 and -6 sulfates and dermatan sulfate). The released glycosaminoglycan (GAG) chains had an Mr of approximately 26,000. Density gradient centrifugation resulted in the partial separation of the extracted proteoglycans into two types with different densities: a heparan sulfate proteoglycan that was enriched in the heavier fraction (p greater than 1.43 g/ml), and a chondroitin sulfate proteoglycan that was concentrated in the lighter fractions (p less than 1.41). The results indicate that two types of proteoglycans are synthesized and incorporated into the GBM that are similar in size and consist of four to five GAG chains (based on cartilage proteoglycan standards). The chromatographic behavior of the extracted proteoglycans and the derived GAG, together with the fact that the two types of proteoglycans can be partially separated into the density gradient, suggest that the heparan sulfate and chondroitin sulfate(s) are located on different core proteins.  相似文献   

11.
Bovine nasal cartilage was extracted with 0.5 M LaCl3 and the extract then diluted with nine volumes of water. The resulting precipitate (PLaCl3) contained the proteoglycan subunits, together with minor protein components, but was essentially free from hyaluronic acid. The properties of PLaCl3 were investigated by chemical analysis, electrophoresis, viscometry and analytical ultracentrifugation, and the results compared with those for proteoglycan obtained by caesium chloride density gradient centrifugation of 2 M CaCl2 cartilage extracts. Proteoglycan subunits (A1D1) prepared from PLaCl3 showed identical properties to those obtained from other high ionic strength cartilage extracts.  相似文献   

12.
The influence of cyclic AMP on cartilage degradation was investigated by using phosphodiesterase inhibitors [theophylline and 3-isobutyl-1-methylxanthine (IBMX)], forskolin (which activates the catalytic subunit of adenylate cyclase) and cyclic AMP analogues (dibutyryl and 8-bromo). Breakdown was assessed by quantification of proteoglycans released into the media of 8-day bovine nasal-septum cartilage cultures. Theophylline (1-20 mM), IBMX (0.01-2 mM) and dibutyryl cyclic AMP (0.1-2 mM) had little or no influence on the rate of proteoglycan release from unstimulated (no-endotoxin) cartilages. A small but detectable increase in breakdown was observed with 8-bromo cyclic AMP (0.5-2 mM) and forskolin (50-75 micrograms/ml). To examine potential inhibitory influences of these agents, the cyclic AMP modulators were added to cultures simultaneously treated with Salmonella typhosa endotoxin (12-25 micrograms/ml), a potent stimulator of cartilage degradation. The 3-4-fold stimulation of breakdown by endotoxin was strikingly inhibited by all three classes of cyclic AMP regulators. Optimal inhibition was found at 10-20 mM-theophylline, 1-2 mM-IBMX, 50-75 micrograms of forskolin/ml, 2 mM-dibutyryl cyclic AMP and 2 mM-8-bromo cyclic AMP. Inhibition was shown to be reversible, indicating that cartilages were viable after treatment. Sepharose CL-2B chromatography of proteoglycan products released from treated cartilages showed that the endotoxin-stimulated shift to lower average Mr was significantly prevented by cyclic AMP analogues and phosphodiesterase inhibitors. Together, these results show that agents which increase cyclic AMP inhibit both quantitative and qualitative aspects of endotoxin-mediated cartilage degradation.  相似文献   

13.
The proteoglycans of the cynomolgus monkey corneal stroma were isolated and characterized by using a combination of physiochemical and biochemical methods. Proteoglycans were biosynthetically radiolabeled by incubating whole corneas in medium containing [35S]sulfate and either [3H]serine or [3H]mannose as precursors. Macromolecules were extracted from the corneal stromas with 4 m guanidine-HCl. After dialysis into 8 m urea, proteoglycans in the extracts were initially purified by DEAE-cellulose chromatography. A portion of the proteoglycan fraction was digested with chondroitinase ABC, and the keratan sulfate proteoglycans were then isolated by rechromatography of the digest on DEAE-cellulose. Another portion of the proteoglycan fraction was digested with endo-β-galactosidase and the dermatan sulfate-proteoglycans were then isolated by chromatography of the digest on Sepharose CL-4B. Each proteoglycan population was further fractionated by chromatography on concanavalin A-Sepharose and by CsCl density gradient centrifugation. Four subpopulations for both the keratan sulfate proteoglycans and the dermatan sulfate proteoglycans were isolated. Based on differences in binding to concanavalin A-Sepharose, buoyant densities, and glycosaminoglycan content, subpopulations of each proteoglycan differ by the number and properties of both the glycosaminoglycan chains and the mannose-containing oligosaccharides attached to their protein core.  相似文献   

14.
Homozygous brachymorphic (bmbm) mice have a disproportionately short stature, similar to human achondroplasia. We previously showed that each zone of growth in young bmbm epiphyseal cartilages is smaller than normal and that the extracellular matrix appears to contain normal collagen fibrils, but smaller and reduced numbers of proteoglycan matrix granules. Our studies reported here indicate that mutant, like normal cartilage, synthesizes type II collagen and contains normal quantities of glycosaminoglycans as judged by uronic acid content. However, the glycosaminoglycans from the mutant differ from the normal in their chromatographic and electrophoretic properties. Further studies established that glycosaminoglycans from cartilages of brachymorphic animals were undersulfated. Whereas chondroitinase digests of glycosaminoglycans from cartilage of normal C57Bl6J 5-day-old mice contained predominantly disaccharides sulfated in the 4-position, that of the mutant contained appreciable unsulfated disaccharides as well.  相似文献   

15.
Subcutaneous implantation of demineralized bone matrix in rats induces migration of host cells into the site and results in the sequential development of cartilage and bone. The biosynthesis and metabolic fate of proteoglycans in the plaques at the bone matrix implantation site were investigated by [35S]sulfate labeling in vivo. 35S-Labeled proteoglycans were extracted with 4 M guanidine HCl and purified by DEAE-Sephacel chromatography. Analysis of proteoglycans on Sepharose CL-2B chromatography showed two major peaks at Kd = 0.28 and 0.68 (peaks I and II, respectively). Peak I proteoglycan has a high buoyant density and contains chondroitin sulfate chains of average Mr = 20,000. Peak II proteoglycan has a lower average buoyant density and contains dermatan sulfate chains of average Mr = 33,000. Throughout the endochondral bone development sequence, peak II proteoglycan predominates. Peak I was low on Day 3, became prominent on Day 7 (approximately 30% of the total radioactivity), and declined after Day 9. The calculated half-lives of peak I and II proteoglycans labeled on Day 7 were about 1.8 and 2.8 days, respectively. After the initiation of osteogenesis, a species of mineral-associated proteoglycan was extracted with a 4 M guanidine HCl solvent containing 0.5 M EDTA. This proteoglycan has a small hydrodynamic size (Kd = 0.38 on Sepharose CL-6B chromatography) and shows a long half-life, about 6 days.  相似文献   

16.
1. Proteoglycans were extracted from bovine nasal cartilage with 2.0M-CaC2 or with 0.15M-KCl followed by 2.0M-CaC2.. Proteoglycan fractions were prepared from the extracts by density-gradient centrifugation in CsCl under 'associative' and 'dissociative' conditions. 2. The heterogeneity of the proteoglycan fractions was investigated by large-pore-gel electrophoresis. It was concluded that extracts made with 2.0M-CaCl2 or sequential 2.0M-CaCl2 contain two major species of proteoglycan 'subunit' of different hydrodynamic size, together with proteoglycan aggregates. Both 'subunits' have mobilities that are greater than those of proteoglycans obtained from pig articular cartilage McDevitt & Muir (1971) Anal. Biochem. 44, 612-622] and are therefore probably smaller in size than the latter. 3. Proteoglycan fractions isolated from cartilage extracted lith 0.15M-KCl separated into two main components on large-pore-gel electrophoresis with mobilities greater than those of proteoglycans extracted with 2.0M-CaCl2. Proteoglycans extracted at low ionic strength from bovine nasal cartilage are of similar hydrodynamic size to those extracted from pig articular cartilage under the same conditions [McDevitt & Muir (1971) Anal. Biochem. 44, 612-622]. 4. The role of endogenous proteolytic enzymes in producing proteoglycan heterogeneity, particularly in low-ionic-strength cartilage extracts is discussed. 5. Hyaluronic acid and 'link proteins' were present in the proteoglycan fraction separated from KCl extracts as well as in the fraction separated from CaCl2 extracts. Hyaluronic acid can only be identified in proteoglycan fractions by large-pore-gel electrophoresis after proteolysis and further purification of the fraction. 6. Collagen was extracted by both salt solutions and was tentatively identified as type II. Small amounts of collagen appear to be associated with the proteoglycan-aggregate fraction from the high-ionic-strength extract but not with the corresponding fraction from the KCl extract.  相似文献   

17.
Interaction between cartilage proteoglycan and the collagen(s) composed of 1 alpha, 2 alpha, and 3 alpha chains was studied in vitro. Most of the collagen was insoluble under the conditions of assay (0.15 M NaCl, 0.008 M phosphate buffer, pH 7.4; 4 degrees C) and was in the form of fibrils 20 nm in diameter or thinner. The larger fibrils had 60-70 nm periodicity, characteristic of native collagens. Proteoglycan monomers which had been labeled by incubating cartilage slices in vitro with Na2 35SO4 were used to assay the interaction. The insoluble collagen fraction bound proteoglycan from solution. At proteoglycan:collagen ratios lower than 1:2, binding was rapid and linear, and the dissociation constant was 1.7 X 10(-9) M. At higher proteoglycan:collagen ratios, more proteoglycan was bound, but at a slower rate. Binding of proteoglycan to collagen did not require fibrils, since soluble 1 alpha, 2 alpha, and 3 alpha containing collagen also bound to proteoglycan and formed an insoluble complex. Denatured collagens did not bind proteoglycan or compete for binding with normal collagen. Optimum binding occurred with intact proteoglycan, but proteoglycan which had been treated with protease was also bound at low levels. Both protease-treated proteoglycan and free chondroitin sulfate competed with intact proteoglycan in the binding assays, but neither chondroitinase ABC-treated proteoglycan nor the oligosaccharides produced by digestion of chondroitin sulfate with testicular hyaluronidase altered the binding of proteoglycan to collagen. Hyaluronic acid did not compete with radioactive proteoglycan, but heparin and dextran sulfate were extremely effective inhibitors of binding. These data suggest a relatively nonspecific interaction between sulfated polyanions and 1 alpha, 2 alpha, and 3 alpha containing collagens. However, given the location of these collagens near the chondrocyte surface, the interaction of fibrillar 1 alpha, 2 alpha, 3 alpha collagen with proteoglycan is likely to occur and to be of biological importance.  相似文献   

18.
Load-bearing cartilages regularly experience changes in fluid content as the result of changing load. It has been found that these changes in fluid content influence proteoglycan synthesis. The mechanism for this effect is not known. We have measured the influence of changes in cartilage hydration on the [35S]sulphate incorporation rate in both bovine nasal and human articular cartilage in medium whose concentration varied over the range 0.2-2-times physiological strength. In physiological medium the incorporation rate fell in proportion to fluid loss with a 10% fall in cartilage hydration resulting in a 30-50% decrease in 35S-incorporation rates. However, in medium of 0.5-times physiological strength, where the incorporation rate was only 40% of control values, the incorporation rate increased initially rather than falling as the cartilage lost fluid. These changes in hydration and hence proteoglycan content resulted in changes in the extracellular ionic composition of cartilage. When this was monitored in terms of [Na+]c, the internal sodium concentration, as a marker for changes in cartilage ionic composition, we found that incorporation rate varied with [Na+]c rather than directly with hydration.  相似文献   

19.
Conditions for specific interaction between Alcian blue and proteoglycans were optimized by comparing the differential spectra of Alcian blue obtained with purified chondroitin sulfate dissolved in water with the spectra obtained with nasal cartilage proteoglycans dissolved in synovial fluid. A method was then designed that provides specific precipitation of proteoglycans or glycosaminoglycans in 4 M guanidine-HCl in the presence of protein, hyaluronic acid, or nucleic acids. The specificity is achieved by using a low pH in combination with detergent and high salt concentration. Stepwise addition of reagents is necessary to avoid binding of Alcian blue to proteins and nucleic acids. All polyanions, except polysulfates, are first neutralized by lowering the pH to 1.5. By including detergent in this step, the hydrophobic protein regions are blocked and not accessible for binding with the dye. These regions could otherwise bind Alcian blue by hydrophobic interaction. When the Alcian blue reagent is added after, only the polysulfated molecules will remain charged and free to interact with Alcian blue. At least 0.4 M guanidine-HCl is required to abolish the negative interference by proteins. All sulfated glycosaminoglycans are precipitated at 0.4 M guanidine-HCl. With increasing guanidine-HCl concentrations, the different glycosaminoglycans are precipitated in accordance with the critical electrolyte concentration of the respective glycosaminoglycan. The Alcian blue precipitation can be performed at different concentrations of guanidine-HCl in order to separate different classes of proteoglycans. Excess dye and contaminating proteins are removed by a wash in a DMSO-MgCl2 solution and the precipitate is dissolved in a mixture of guanidine-HCl and propanol. For quantitation, the absorbance is recorded in a microplate reader with the 600-nm filter, the assay being linear between 0.5 and 20 μg proteoglycan. Since no digestion of samples with protease is needed, the proteoglycans are recovered in native form. The proteoglycan-Alcian blue complexes dissociate in the guanidine-HCl/propanol mixture and the proteoglycans can be selectivelyprecipitated with propanol. The dye is used for quantitation and the proteoglycans can be utilized for further analysis.  相似文献   

20.
The proportion of total tissue hyaluronan involved in interactions with aggrecan and link protein was estimated from extracts of canine knee articular cartilages using a biotinylated hyaluronan binding region-link protein complex (bHABC) of proteoglycan aggregate as a probe in an ELISA-like assay. Microscopic sections were stained with bHABC to reveal free hyaluronan in various sites and zones of the cartilages. Articular cartilage, cut into 20 m-thick sections, was extracted with 4 M guanidinium chloride (GuCl). Aliquots of the extract (after removing GuCl) were assayed for hyaluronan, before and after papain digestion. The GuCl extraction residues were analyzed after solubilization by papain. It was found that 47–51% of total hyaluronan remained in the GuCl extraction residue, in contrast to the 8–15% of total proteoglycans. Analysis of the extract revealed that 24–50% of its hyaluronan was directly detecable with the probe, while 50–76% became available only after protease digestion. The extracellular matrix in cartilage sections was stained with the bHABC probe only in the superficial zone and the periphery of the articular surfaces, both sites known to have a relatively low proteoglycan concentration. Trypsin pretreatment of the sections enhanced the staining of the intermediate and deep zones, presumably by removing the steric obstruction caused by the chondroitin sulfate binding region of aggrecans. Enhanced matrix staining in these zones was also obtained by a limited digestion with chondroitinase ABC. The results indicate that a part of cartilage hyaluronan is free from endogenous binding proteins, such as aggrecan and link protein, but that the chondroitin sulfate-rich region of aggrecan inhibits its probing in intact tissue sections. Therefore, hyaluronan staining was more intense in cartilage areas with lower aggrecan content. A large proportion of hyaluronan resists GuCl extraction, even from 20-m-thick tissue sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号