首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular structure of poly (I).poly (A).poly (I) has been determined and refined using the continuous intensity data on layer lines in the x-ray diffraction pattern obtained from an oriented fiber of this polymorphic RNA complex. The polymer forms a 12-fold right-handed triple-helix of pitch 39.7A and each base-triplet is stabilized by quasi Crick-Watson-Hoogsteen hydrogen bonds. The ribose rings in all the three strands have C3'-endo conformations. The final R-value for this best structure is 0.24 and the x-ray fit is significantly superior to all the alternative structures where the different chains might have different furanose conformations. This all-purine triple-helix, counter-intuitively, has a diameter roughly 3A shorter than that of DNA and RNA triple-helices containing a homopurine and two complementary homopyrimidine strands. Its compact, grooveless cylindrical shape is consistent with the lack of lateral organization.  相似文献   

2.
The molecular structure of poly (dT).poly (dA).poly (dT) has been determined and refined using the continuous x-ray intensity data on layer lines in the diffraction pattern obtained from an oriented fiber of the DNA. The final R-value for the preferred structure is 0.29 significantly lower than that for plausible alternatives. The molecule forms a 12-fold right-handed triple-helix of pitch 38.4 A and each base triplet is stabilized by a set of four Crick-Watson-Hoogsteen hydrogen bonds. The deoxyribose rings in all the three strands have C2'-endo conformations. The grooveless cylindrical shape of the triple-helix is consistent with the lack of lateral organization in the fiber.  相似文献   

3.
The double-stranded polypurine.polypyrimidines poly(dG).poly(dC) and poly[d(A-G)].poly[d(T-C)] and the mixed ribose-deoxyribose polynucleotide poly(rG-dC).poly(rG-dC) have been successfully reconstituted into nucleosomes. The radioactively labeled particles comigrate in gel electrophoresis and sucrose density gradient experiments with authentic nucleosomes derived from chicken erythrocyte chromatin. These results show that nucleosomes are able to accommodate a wider variety of polynucleotides than was previously believed.  相似文献   

4.
Coralyne is a small crescent-shaped molecule known to intercalate duplex and triplex DNA. We report that coralyne can cause the complete and irreversible disproportionation of duplex poly(dT)·poly(dA). That is, coralyne causes the strands of duplex poly(dT)·poly(dA) to repartition into equal molar equivalents of triplex poly(dT)·poly(dA)·poly(dT) and poly(dA). Poly(dT)·poly(dA) will remain as a duplex for months after the addition of coralyne, if the sample is maintained at 4°C. However, disproportionation readily occurs upon heating above 35°C and is not reversed by subsequent cooling. A titration of poly(dT)·poly(dA) with coralyne reveals that disproportionation is favored by as little as one molar equivalent of coralyne per eight base pairs of initial duplex. We have also found that poly(dA) forms a self-structure in the presence of coralyne with a melting temperature of 47°C, for the conditions of our study. This poly(dA) self-structure binds coralyne with an affinity that is comparable with that of triplex poly(dT)·poly(dA)·poly(dT). A Job plot analysis reveals that the maximum level of poly(dA) self-structure intercalation is 0.25 coralyne molecules per adenine base. This conforms to the nearest neighbor exclusion principle for a poly(dA) duplex structure with A·A base pairs. We propose that duplex disproportionation by coralyne is promoted by both the triplex and the poly(dA) self-structure having binding constants for coralyne that are greater than that of duplex poly(dT)·poly(dA).  相似文献   

5.
Differential UV spectroscopy and thermal denaturation were used to study the Mg2+ ion effect on the conformational equilibrium in poly A · 2 poly U (A2U) and poly A · poly U (AU) solutions at low (0.01 M Na+) and high (0.1 M Na+) ionic strengths. Four complete phase diagrams were obtained for Mg2+–polynucleotide complexes in ranges of temperatures 20–96 °C and concentrations (10−5–10−2) M Mg2+. Three of them have a ‘critical’ point at which the type of the conformational transition changes. The value of the ‘critical’ concentration ([Mgt2+]cr=(4.5±1.0)×10−5 M) is nearly independent of the initial conformation of polynucleotides (AU, A2U) and of Na+ contents in the solution. Such a value is observed for Ni2+ ions too. The phase diagram of the (A2U+Mg2+) complex with 0.01 M Na+ has no ‘critical’ point: temperatures of (3→2) and (2→1) transitions increase in the whole Mg2+ range. In (AU+Mg2+) phase diagram at 0.01 M Na+ the temperature interval in which triple helices are formed and destroyed is several times larger than at 0.1 M Na+. Using the ligand theory, a qualitative thermodynamic analysis of the phase diagrams was performed.  相似文献   

6.
A circular dichroism study of poly dG, poly dC, and poly dG:dC   总被引:22,自引:0,他引:22  
D M Gray 《Biopolymers》1974,13(10):2087-2102
We have measured the ultraviolet circular dichroism spectra of oligo d(pG)5, poly dN AcG, poly dI, poly dC, two samples of poly dG, and four samples containing double-stranded poly dG:dC. We find that oligo d(pG)5 and poly dG exist in self-complexed forms as well as in single-stranded forms. Unlike the self-complexed form of poly dG, the single-stranded form of poly dG can hydrogen-bond with single-stranded poly dC. We present spectral data for double-stranded poly dG:dC, which can be used to help characterize poly dG:dC preparations and which provide a basis for resolving discrepancies among other reported poly dG:dC spectra.  相似文献   

7.
Proton exchange of poly(rA).poly(rU) and poly(rI).poly(rC) has been studied by nuclear magnetic resonance line broadening and saturation transfer from H2O. Five exchangeable peaks are observed. They are assigned to the imino, amino and 2'-OH ribose protons. The aromatic spectrum is also assigned. Contrary to previous observations, we find that the exchange of the imino proton is strongly buffer sensitive. This property is used to derive the base-pair lifetime, which is in the range of milliseconds at 27 degrees C, 100 times smaller than published values. The enthalpy for the base-opening reaction (-86 kJ/mol) and the insensitivity of the reaction to magnesium suggest that the open state involves a small number of base-pairs. The similarities in the exchange from the two duplexes indicate that the same open state is responsible for exchange of purine and pyrimidine imino protons. For the lifetime of the open state and for the base-pair dissociation constant, we obtain only lower limits. At 27 degrees C they are three microseconds and 10(-3), respectively. The analysis that yields the much larger values published previously is based on the assumption that amino protons exchange only from open base-pairs. But theory and preliminary experiments indicate that it may occur from the closed duplex. The exchange of amino protons is slower than that of the imino protons. Exchange of the 2'-OH protons from the duplexes is much slower than from single-stranded poly(rU), and it is accelerated by magnesium. This could indicate hydrogen-bonding to backbone phosphate. Discrepancies between our results and those of previous studies are discussed.  相似文献   

8.
The effect of hydrostatic pressure upon the DNA duplex, poly(dA)poly(dT), and its component single strands, poly(dA) and poly(dT) has been studied by fourier-transform infrared spectroscopy (FT-IR). The spectral data indicate that at 28 degrees C and pressures up to 12 kbar (1200 MPa) all three polymers retain the B conformation. Pressure causes the band at 967 cm(-1), arising from water-deoxyribose interactions, to shift to higher frequencies, a result consistent with increased hydration at elevated pressures. A larger pressure-induced frequency shift in this band is observed in the single stranded polymers than in the double stranded molecule, suggesting that the effect of pressure on the hydration of single strands may be greater than upon a double stranded complex. A pressure-dependent hypochromicity in the bands attributed to base stacking indicates that pressure facilitates the base stacking in the three polymers, in agreement with previous assessments of the importance of stacking in the stabilization of DNA secondary structure at ambient and high pressures.  相似文献   

9.
FTIR study of netropsin binding to poly d(A-T) and poly dA.poly dT   总被引:1,自引:0,他引:1  
Complexes between netropsin and two polynucleotides containing only AT base pairs (poly d(A-T) and poly dA.poly dT) have been prepared at various drug/base pair ratios and studied in solution by Fourier Transform Infrared Spectroscopy. The drug is shown to interact in the narrow groove of poly d(A-T) with the C2O2 carbonyl of thymines and the N3 groups of adenines. Moreover the spectral modifications allow us to propose the existence of interactions at the level of the deoxyribose. No effect is detected on the phosphate groups when netropsin is progressively added. In the case of poly dA.poly dT the interaction seems much weaker as if the high propeller twist of the homopolymer would make the accessibility of the drug to the minor groove more difficult.  相似文献   

10.
Interaction of magnesium ions with poly A and poly U   总被引:2,自引:0,他引:2  
The binding of Mg++ to poly A and poly U has been measured quantitatively by using the metallochromic indicator calmagite. The method is described in detail. It is shown that there is electrostatic interaction between the binding sites, viz., the phosphate groups, and the intrinsic association constant, for the specific binding can be determined. After extrapolation to zero ionic strength we find that, for the binding of Mg++ to poly A, kint = 4 × 104 and for that, to poly U, kint = 3 × 104. The intrinsic enthalpy of association is negative. The effect of Mg++ on the secondary structure of poly A and poly U has been studied by measuring the ultraviolet absorbance, optical rotatory dispersion and viscosity as a function of the amount of added Mg++ ions. It was found that Mg++ promotes the formation of a more ordered secondary structure by neutralizing or screening the negative charges. It is concluded from the absorbance measurements that for poly A at pH ? 7 and for poly U at pH >xs 9 this ordering involves stacking of the bases. Likewise, in solutions of UDP with a pH around 10, base stacking occurs on addition of Mg++.  相似文献   

11.
The homopolynucleotide (homo-oligonucleotide) tracts function as regulatory elements at various stages of mRNAs life cycle. Numerous cellular proteins specifically bind to these tracts. Among them are the different poly(A)-binding proteins, poly(C)-binding proteins, multifunctional fragile X mental retardation protein which binds specifically both to poly(G) and poly(U) and others. Molecular mechanisms of regulation of gene expression mediated by homopolynucleotide tracts in RNAs are not fully understood and the structural diversity of these tracts can contribute substantially to this regulation.

This review summarizes current knowledge on different forms of homoribopolynucleotides, in particular, neutral and acidic forms of poly(A) and poly(C), and also biological relevance of homoribopolynucleotide (homoribo-oligonucleotide) tracts is discussed. Under physiological conditions, the acidic forms of poly(A) and poly(C) can be induced by proton transfer from acidic amino acids of proteins to adenine and cytosine bases. Finally, we present potential mechanisms for the regulation of some biological processes through the formation of intramolecular poly(A) duplexes.  相似文献   


12.
Most duplex DNAs that are in the "B" conformation are not immunogenic. One important exception is poly(dG) X poly(dC), which produces a good immune response even though, by many criteria, it adopts a conventional right-handed helix. In order to investigate what features are being recognized, monoclonal antibodies were prepared against poly(dG) X poly(dC) and the related polymer poly(dG) X poly(dm5C). Jel 72, which is an immunoglobulin G, binds only to poly(dG) X poly(dC), while Jel 68, which is an immunoglobulin M, binds approximately 10-fold more strongly to poly(dG) X poly(dm5C) than to poly(dG) X poly(dC). For both antibodies, no significant interaction could be detected with any other synthetic DNA duplexes including poly[d(Gm5C)] X poly[d(Gm5C)] in both the "B" and "Z" forms, poly[d(Tm5Cm5C)] X poly[d(GGA)], and poly[d(TCC)] X poly[d(GGA)], poly(dI) X poly(dC), or poly(dI) X poly(dm5C). The binding to poly(dG) X poly(dC) was inhibited by ethidium and by disruption of the DNA duplex, confirming that the antibodies were not recognizing single-stranded or multistranded structures. Furthermore, Jel 68 binds significantly to phage XP-12 DNA, which contains only m5C residues and will precipitate this DNA in the absence of a second antibody. The results suggest that (dG)n X (dm5C)n sequences in natural DNA exist in recognizably distinct conformations.  相似文献   

13.
Apparent molar adiabatic compressibilities and apparent molar volumes of poly[d(A-T)].poly[d(A-T)], poly(dA).poly(dT), DNA and poly(A).poly(U) in aqueous solutions were determined at 1 degree C. The change of concentration increment of the ultrasonic velocity upon replacing counter ion Cs+ by the Mg2+ ion was also determined for these polymers. The following conclusions have been made: (1) the hydration of the double helix of poly(dA).poly(dT) is remarkably larger than that of other polynucleotides; (2) the hydration of the AT pair in the B-form DNA is larger than that of the GC pair; (3) the substitution of Cs+ for Mg2+ ions as counter ions results in a decrease of hydration of the system polynucleotide plus Mg2+, and (4) the magnitude of this dehydration depends on the nucleotide sequence; the following rule is true: the lesser is a polynucleotide hydration, the larger dehydration upon changing Cs+ for Mg2+ ions in the ionic atmosphere of polynucleotide.  相似文献   

14.
H H Klump  E Schmid    M Wosgien 《Nucleic acids research》1993,21(10):2343-2348
The conformational change for the alternating purine-pyrimidine polydeoxyribonucleotides i.e. poly d(A-T), poly d(G-C), and poly d(A-C) poly d(G-T) from a right-handed conformation at room temperature to the left-handed Z-DNA like double helix at elevated temperatures has been studied by UV spectroscopy, Raman spectroscopy, and by adiabatic differential scanning microcalorimetry (DSC) in the presence of Na+ and Mg2+ or Ni2+ respectively as counterions. The differential UV spectra reveal through a hyperchromic shift at around 280nm and a hypochromic shift at 260nm that a conformational change to the left-handed conformation occurs. The Raman spectra clearly show characteristic changes, a drastic decrease of the band at 680cm-1 and the appearance of a new band at 628cm-1, due to the change of the purine bases to the syn conformation upon inversion of the helix-handedness. The course of the transition as function of temperature can be followed quantitatively by plotting the change in the excess heat capacity vs. temperature. The transition enthalpy delta H for the B- to Z-DNA transition per mole base pairs (mbp) amounts to 2.0 +/- 0.2kcal for poly d(G-C), to 4.0 +/- 0.4kcal for poly d(A-T), and to 3.1 +/- 0.3kcal for poly d(A-C) poly d(G-T). The enthalpy change due to the Z-DNA to coil transitions (per mole base pairs) amounts to 11kcal for poly d(G-C), 10.5kcal for poly d(A-T) and 11.3kcal for poly d(A-C) poly d(G-T).  相似文献   

15.
Complexes of polyribocytidylic acid and polyriboadenylic acid with poly(L -lysine) and poly(L -arginine) were studied by Raman spectroscopy. The backbones of both polynucleotides are distorted by poly(L -arginine). On the other hand, poly(L -lysine) could distort the backbone of polyriboadenylic acid but not that of polyribocytidylic acid. In general, poly(L -arginine) can increase the order of the base stacking, while poly(L -lysine) causes disordering in the base stacking.  相似文献   

16.
T R Fink  D M Crothers 《Biopolymers》1972,11(1):127-136
We prepared helices with noncomplementary bases by N1-oxidation of poly A, followed by reaction with poly U. Mixing curves indicate that doubly and triply helical structures form, with only the unmodified adenines involved in base pair formation. Circular dichroism spectra were examined particularly at the absorbance maximum of the adenine N1-oxide (A*). In the single strand poly (A,A*), there is a relatively strong pair of positive and negative CD bands from the A*. These are greatly reduced in the double helix, and abolished in the triple helix. We conclude that A* stacks in a conventional manner with A in the single strand, but is rotated out of the double and triple helix. In the double helix the A* probably maintains a preferred orientation with respect to the helix, but rotates randomly in the triple helix.  相似文献   

17.
Molecular motion in solid poly(L -alanine), Poly(L -leucine), poly(L -valine), and polyglycine has been investigated through measurement of the portion spin-lattice relaxation time at 30 and 60 MHz between 110 and 350°K. Rapid random reoriention of sied-chain methyl groups provides the dominent source of relaxation in the first three; activation energies are 10.5 ± 1 1, 8.5 ± 1 kJ/mol, respectively, significantly lower than in the monomeric crystals. Relaxation times in poyglycine are two orders of magnitude longer than in the monomeric crystals. Relaxation times in polyglycine, significantly lower than in the monomeric crystals. Relaxation times in polyglycine are two orders of magnitude longer and are attributed mainly to segmental motions of the polymer chains. Evidence of nonexponential recovery of nuclear magnetization was encountered in the first three homopolyamino acids but not in polylycine, and was attributed to the correlated time to characterize these motions gave quite good agreement with the data; some improvement was obtained for two polymers using a Cole-Davidson distribution of correlation times. For biopolymers using a Cole-Davidson distribution of correlation times. For biopolymers generally it is concluded that rapid methyl group reorientation is a common dynamical feature and an important source of nuclear magnetic relaxation.  相似文献   

18.
Optical spectroscopic properties of 4',6-diamidino-2-phenylindole (DAPI) and ethidium bromide complexed with poly(dG).poly(dC).poly(dC)(+) triplex and poly(dG).poly(dC) duplex were compared in this study. When complexed with both duplex and triplex, ethidium is characterized by hypochromism and a red shift in the absorption spectrum, a complicate induced circular dichroism (CD) band in the polynucleotide absorption region, and a negative reduced linear dichroism signal in both polynucleotide and drug absorption regions. The spectral properties for both duplex- and triplex-bound ethidium are identical and both can be understood by the intercalation binding mode. In contrast, the absorption and CD spectra of DAPI complexed with triplex differ from those of the DAPI-duplex complex, although both complexes can be understood by the intercalation binding mode. Considering that the third strand runs along the major groove of the template duplex, we conclude that the DAPI molecule partially intercalates near the major groove of the duplex, where the third strand can affect its spectroscopic properties.  相似文献   

19.
S P Fodor  P A Starr  T G Spiro 《Biopolymers》1985,24(8):1493-1500
Raman spectra have been recorded for poly(dG-dT) · poly(dA-dC) and poly(dA-dT) · poly(dA-dT) in low salt and at high concentrations of CsF. Poly(dG-dT) · poly(dA-dC) shows no change in the 682-cm?1 guanine mode, demonstrating the absence of the Z-structure at high salt. The 790-cm?1 phosphodiester symmetric stretch, however, shifts up 5 cm?1 in 4.3M CsF, suggesting a slight conformational change, associated with ion binding or hydration changes. Poly(dA-dT) · poly(dA-dT) shows an additional broad band at 816 cm?1, attributed to the phosphodiester modes associated with the C3′-endo deoxyribose units in the alternating B-structure. In this case, both the 841- and the 816-cm?1 asymmetric phosphodiester stretches, associated with the C2′- and C3′-endo units, shift down on addition of CsF in a sequential manner. Correlation of this sequence with that previously observed for the two 31P-nmr resonances, establishes that the phosphodiester stretching frequencies depend on the conformation of the 5′-sugar, and not on the 3′-sugar.  相似文献   

20.
The activity of a 7.3S-8.3S Drosophila DNA polymerase was characterized in detail using poly dA.p(dT)[unk] and poly rA.p(dT)[unk]. With poly dA.p(dT)[unk], Mg(2+) ion was the preferred divalent cation, and enzyme activity was inhibited by K(+) ion and by spermidine. With poly rA.p(dT)[unk], Mn(2+) ion was the preferred divalent cation and enzyme activity was stimulated by K(+) ion and by spermidine. The dependence of enzyme activity on the concentration of primer-template and on the ratio of primer to template was the same in both reactions. The two enzyme activities were identically inhibited by N-ethylmaleimide. Poly dA was replicated extensively and poly rA was replicated partially. The activation energy for poly dA replication was twice that for poly rA replication. Enzyme activity with poly dA.p(dT)[unk] was more stable to thermal inactivation than was enzyme activity with poly rA.p(dT)[unk]. These studies suggest that the same enzyme responds to both the deoxy- and the ribohomopolymer template but that the mechanisms of replication may be different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号