首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mink cell cultures infected with the Snyder-Theilen strain of feline sarcoma-leukemia virus were cloned from single cells under conditions favoring single virus-single cell interactions. The primary colonies included (i) typical feline sarcoma virus (FeSV)-transformed nonproducer clones, one of which segregated revertants, and (ii) FeSV-infected, phenotypically normal clones, three of which spontaneously converted to the transformed phenotype. The revertants and spontaneous transformants were compared with parental and sister clones expressing the opposite phenotype. Transformed subclones formed colonies in agar, were tumorigenic in nude mice, and failed to bind epidermal growth factor, whereas flat sister subclones were indistinguishable from uninfected mink cells in each of these assays. Sister subclones derived from the same infectious event contained FeSV proviruses integrated at the same molecular site, regardless of which phenotype was expressed. One revertant clone, however, lacked most FeSV proviral DNA sequences but retained terminal portions of the FeSV genome which persisted at the original site of proviral DNA insertion. Two flat subclones expressed viral RNA and the phosphorylated "gag-x" polyprotein (pp78gag-x) encoded by the gag and src sequences of the FeSV genome. Both of these clones were susceptible to retransformation by FeSV. Although unable to induce foci, the viruses rescued from these cells contained as much FeSV RNA as the focus-forming viruses rescued from transformed sister subclones and could be retransmitted to mink cells, again inducing FeSV gene products without signs of morphological transformation. We conclude that these FeSV genomes represent transformation-defective mutants.  相似文献   

2.
The number of Rous viral genomes in the cellular DNA from two subclones (RS2/3, RS2/6) derived from the same clone of hamster BHK-21 cells transformed by Rous sarcoma virus was determined by hybridization with viral complementary DNA made in vitro, and the capacity of the cellular DNA to infect (transfect) chicken embryo fibroblasts was compared before and after shearing this DNA to about the size of the provirus (6 x 10(6) to 7 x 10(6) daltons). The two subclones differed widely both in their capacity to give rise to virus (inducibility) after fusion with chicken embryo fibroblasts and in level of expression of viral proteins. It was shown that cells of both subclones contain a single copy of Rous DNA and yield infectious DNA. However, whereas transfection of chicken embryo fibroblasts was successful with both unsheared (>/=18 x 10(6) daltons) and sheared DNA from the most inducible subclone (RS2/3 subclone), which also expresses viral proteins to an appreciable amount, transfection with DNA from the least inducible subclone (RS2/6 subclone), in which viral proteins are not expressed, succeeded only with sheared DNA. It was then about as successful as with sheared or unsheared RS2/3 DNA. The lack of infectivity of unsheared RS2/6 DNA may be explained by the hypothesis proposed by Cooper and Temin (G. M. Cooper and H. T. Temin, J. Virol. 17:422-430, 1976) to explain the lack of infectivity of DNA from certain chicken cells producing spontaneously low amounts of RAV-0 and resistant to exogenous RAV-0 infection, that is, that the viral genome (proviral DNA) is linked to a cis-acting control element which blocks its expression. This linkage might originate, in RS2/6 cells, from translocation of cellular DNA containing the single proviral copy.  相似文献   

3.
A cloned, permuted DNA copy of the Abelson murine leukemia virus (A-MuLV) genome was capable of eliciting the morphological transformation of NIH/3T3 fibroblasts when applied to cells in a calcium phosphate precipitate. The efficiency of the process was extremely low, yielding approximately one transformant per microgram of DNA under conditions which give 10(4) transfectants per microgram of other DNAs (e.g., Moloney sarcoma virus proviral DNA). The DNA was able to induce foci, even though the 3' end of the genome was not present. The transforming gene was thus localized to the 5' portion of the genome. The transformed cells all produced viral RNA and the virus-specific P90 protein. Transmissible virus could be rescued from these cells at very low frequencies by superinfection with helper virus; the rescued A-MuLV virus had variable 3' ends apparently derived by recombination with the helper. Dimerization of the permuted A-MuLV cloned genome to reconstruct a complete provirus did not improve transformation efficiency. Virus could be rescued from these transformants, however, at a high efficiency. Cotransfection of the permuted A-MuLV DNA with proviral M-MuLV DNA yielded a significant increase in the efficiency of transformation and cotransfection of dimeric A-MuLV and proviral M-MuLV resulted in a high-efficiency transformation yielding several thousand more transformants per microgram than A-MuLV DNA alone. We propose that helper virus efficiently rescues A-MuLV from transiently transfected cells which would not otherwise have grown into foci. We hypothesize that multiple copies of A-MuLV DNA introduced into cells by transfection are toxic to cells. In support of this hypothesis, we have shown that A-MuLV DNA sequences can inhibit the stable transformation of cells by other selectable DNAs.  相似文献   

4.
The clone All of avian sarcoma virus B77-infected Rat-1 cells comprises both morphologically normal and morphologically transformed derivatives. Transformed subclones, in which virus-specific RNA is readily detectable, contain a provirus that is very sensitive to DNase 1 digestion of chromatin, and show DNase 1 hypersensitive sites at the 5' end of the provirus and in 5' flanking cell DNA. Normal subclones with no detectable virus-specific RNA, whether infected cells that have never been transformed or revertants derived from transformed cells, contain a provirus that is far more resistant to DNase 1 digestion. Moreover this provirus lacks hypersensitive sites at its 5' end, although DNase 1 hypersensitive sites were detected at the 3' end of the provirus in either normal or transformed clones. The pattern of cytosine methylation in the proviral restriction sites of the isoschizomers Msp I and Hpa II differed between transformed and revertant clones; the revertants show additional methylation at some CpG doublets.  相似文献   

5.
6.
7.
From 6 clones of Chinese hamster cells varying in the rate of the loss of transformant phenotype and containing a thymidine kinase gene (tk-gene) of Herpes simplex virus type 1 (HSV1), 25 subclones negative in thymidine kinase (TK-) were isolated on a medium with 50 micrograms/ml 5-bromodeoxyuridine (BrdU). A study was made of the frequency of spontaneous reversions to the TK+ phenotype in cell populations of BrdU-resistant subclones, and of the transforming activity (upon transformation of TK- cells of A238 clone to the TK+ phenotype) of DNA preparations from a row BrdU-resistant subclones. In 7 of 11 BrdU-resistant subclones the TK- phenotype is associated with changes reducing significantly the transforming activity of DNA. Some of these alterations are stable and undergo no spontaneous reversion, while the other ones are unstable, being reversed or suppressed at a high frequency. BrdU-resistant subclones produced from clones more stable in transformant phenotype are on the whole more stable in the TK- phenotype than BrdU-resistant subclones from the clones with the high rate of the loss of the TK+ phenotype.  相似文献   

8.
Cell lines of four mammalian species were each examined for the number of Moloney murine sarcoma virus (M-MSV) DNA copies in total cellular DNA after M-MSV transformation. Sarcoma-positive, leukemia-negative (S+L-) M-MSV-transformed cells were compared to M-MSV-transformed cells infected with a replicating leukemia virus. Both unfractionated M-MSV complementary DNA and complementary DNA representing the MSV-specific and the MSV-murine leukemia virus-common regions of the M-MSV genome were hybridized to total cellular DNA of various species. DNAs of mouse, cat, dog, and human S+L-cells contained from less than one to a few proviral M-MSV DNA copies per haploid genome. In contrast, helper virus-coinfected, M-MSV-producing cells of each species showed a 3- to 10-fold increase in M-MSV proviral DNA over that found in corresponding S+L- cells. MSV-specific and MSV-murine leukemia virus-common nucleotide sequences were each increased to a similar degree. A corresponding examination of cellular DNA of leukemia virus-infected normal or S+L- mammalian cells was performed to establish the resulting number of leukemia proviral DNA copies. The infection of normal or S+L- mammalian cells with several leukemia-type viruses that did not have nucleotide sequences closely related to the cell before infection resulted in the appearance of one to three corresponding leukemia proviral DNA copies.  相似文献   

9.
10.
Five clonal cell lines were established from a spontaneous BALB/c mouse osteosarcoma, and characterized. Four of these lines showed some similarities in morphology, in vitro growth properties, production of collagenous and noncollagenous extracellular matrix proteins and osteogenic differentiation. The cells formed colonies with characteristic differences in size and morphology in soft agar, and osteogenic sarcomas and metastases in syngeneic mice after transplantation. Ultrastructurally, cells in the transplant tumours showed marked osteogenic features. There were no osteoclast-like cells. The fifth cell line had somewhat different characteristics. All five lines expressed infectious endogenous murine leukemia viruses. Increased c-myc protoon-cogene expression was found in one cell line and c-fos expression at different levels in all lines. There was only very low expression of c-Ha-ras and no expression of c-Ki-ras and c-sis. DNA analysis showed the presence of newly acquired proviral genomes integrated at different sites in the cellular DNA. The results show that distinct osteogenic neoplastic subclones can be obtained from a primary mouse osteosarcoma. Although the clones exhibited an appreciable morphological, functional, and molecular diversity they retained the basic pathogenic properties of the tumour from which they were derived.  相似文献   

11.
12.
We have recently reported that viral DNA sequences in inbred LSH hamster brain cells transformed by the GS variant of BK virus (LSH-BR-BK) are present predominantly in a free form (Beth et al., J. Virol. 40:276-284, 1981). In this report, we confirm that the presence of viral DNA sequences in these cells is not due to virus production, since viral capsid proteins were not detected by immunoprecipitation. Furthermore, we examined the status of viral DNA in 15 subclones of this cell line and detected free and integrated viral DNA sequences in only 5 of the subclones. The other 10 subclones contained exclusively integrated viral DNA sequences, as shown by the blot hybridization of high-molecular-weight cell DNA which was uncleaved or digested with HincII, for which there are no sites in viral DNA. The arrangement of viral DNA in these clones was further analyzed by cleavage of cellular DNA with HpaII and HindIII. Mitomycin (0.03 microgram/ml) treatment of subclones containing only integrated sequences resulted in the appearance of free viral DNA sequences in some of these cells. This result supports the postulation that free viral DNA in LSH-BR-BK cells is made up of excision products of observed tandemly repeated integrated sequences. In addition to the large T- and small t-antigens, LSH-BR-BK and all of its 15 subclones contained two antigen species which were larger than large T and one species which was smaller than small t. The number of tumor antigens in the LSH- BR-BK cell line and its subclones with a large copy number in a free form was not more than in the subclones with low copy number and integrated DNA. This suggests that free viral DNA is not a template for tumor antigen production in transformed cells.  相似文献   

13.
14.
15.
W H Lee  C P Liu    P Duesberg 《Journal of virology》1982,44(1):401-412
We have molecularly cloned an integrated proviral DNA of Fujinami sarcoma virus (FSV) into a lambda phage vector and further subcloned it into plasmid pBR322. The source of provirus was a quail nonproducer cell clone transformed by FSV. The FSV strain used is temperature sensitive in the maintenance of transformation of avian cells. The recombinant plasmid was shown to contain an entire FSV genome by fingerprinting the hybrids formed with 32P-labeled FSV RNA. This analysis also revealed a previously undetected env-related sequence in FSV which represents the 3' end of the gp85 env gene. A physical map of cloned FSV DNA identifying sites of several restriction enzymes is described. Upon transfection, FSV DNA cloned in pBR322 transformed mouse NIH-3T3 cells, which proved to be temperature sensitive in maintaining transformation. Phosphorylation but not synthesis of p140, the only known gene product of FSV, was also temperature sensitive in these cells. The correlation between transformation and phosphorylation of p140 suggests that phosphorylation of p140 is necessary for transformation of mouse cells, as was shown previously for avian cells. These results provide direct genetic evidence that the mechanisms for maintaining transformation of mammalian and avian cells involve the same FSV gene product, p140. Homology was detected by hybridization between transformation-specific sequences of FSV DNA and certain restriction endonuclease-resistant fragments of cellular DNA of two avian species, chicken and quail. Under the same conditions homology was also detected with DNA of non-avian species, although apparently to a lower degree than with avian cells.  相似文献   

16.
Cellular transformation by subgenomic feline sarcoma virus DNA   总被引:6,自引:3,他引:3       下载免费PDF全文
The genome of the Snyder-Theilen strain of feline sarcoma virus (ST-FeSV) is a 4.3-kilobase-pair (kbp) RNA molecule that contains a 1.5-kbp cellular insertion (fes gene) flanked by feline leukemia virus sequences at its 5' end (1.6 kbp) and 3' end (1.2 kbp) (Sherr et al., J. Virol. 34:200-212, 1980). DNA transfection techniques have been utilized to determine the regions of the ST-FeSV genome involved in malignant transformation. I have found that the 3.7-kbp 5'-end fragment of the ST-FeSV provirus (which corresponds to the 3.4-kbp 5'-end fragment of the viral genome) is sufficient to transform NIH/3T3 fibroblasts. Enzymes that cleave the ST-FeSV provirus DNA within the feline leukemia virus gag gene sequences or within the fes gene abolished the transforming activity. Preservation of the proviral large terminal repeats was also required for transformation. Transformed NIH/3T3 cells obtained by transfection of total or subgenomic ST-FeSV DNA expressed normal levels of the ST-FeSV gene product ST P85 and of its associated protein kinase activity. Furthermore, these cells contained high levels of phosphotyrosine residues, a biochemical marker associated with cellular transformation induced by certain retroviruses including ST-FeSV. These results, taken together, strongly support the concept that only those ST-FeSV proviral sequences necessary for ST P85 expression are involved in malignant transformation.  相似文献   

17.
A Panet  H Cedar 《Cell》1977,11(4):933-940
The sensitivity to micrococcal nuclease and DNAase I of the integrated proviral DNA sequences in Swiss mouse cells infected with Moloney murine leukemia virus has been studied. Chromatin was separated into micrococcal nuclease-sensitive and -resistant regions, and the amount of proviral sequences in these DNA preparations was estimated by kinetic hybridization with single-stranded complementary DNA of Moloney murine leukemia virus. At least two thirds of the proviral DNA sequences were found in the open regions of chromatin, and only one third was resistant to nuclease. The proviral DNA sequences are even more sensitive to deoxyribonuclease I. When intact nuclei were treated with limited amounts of enzyme, only 5% of the nuclear DNA was digested, whereas 48% of the proviral DNA was degraded.The proviral DNA sequences in cells which do not produce virus are more resistant to nuclease digestion, as compared to virus producer cells. Thus the endogenous proviral sequences, in normal uninduced Swiss mouse cells, are randomly distributed between resistant and sensitive portions of chromatin when tested with either micrococcal nuclease or pancreatic deoxyribonuclease I. The effect of cell cycle synchronization on the accessibility of the proviral sequences to pancreatic deoxyribonuclease I was investigated with rat cells infected with Moloney murine leukemia virus. The amount of proviral DNA sensitive to pancreatic deoxyribonuclease I is higher in actively dividing cells than in cells arrested at Go phase, which produce only small amounts of virus.  相似文献   

18.
19.
We used DNA containing the am gene of Neurospora crassa, cloned in the lambda replacement vector lambdaL-47 (this clone is designated lambdaC-10), and plasmid vector subclones of this DNA to transform am deletion and point mutant strains. By means of subcloning, all sequences required for transformation to am prototrophy and expression of glutamate dehydrogenase have been shown to reside on a 2.5-kilobase BamHI fragment. We also characterized several am+ strains that were obtained after transformation with lambdaC-10. These strains showed Mendelian segregation of the am+ gene, although less than 50% of the transformed strains showed the normal linkage relationship of am with inl. In all cases tested, the strains had incorporated lambda DNA as well. The lambda DNA also showed a Mendelian segregation pattern. In one case, the incorporation of am DNA in a novel position was associated with a mutagenic event producing a strain with a very tight colonial morphology. In all cases in which the am+ gene had become the resident of a new chromosome, glutamate dehydrogenase was produced to only 10 to 20% of the wild-type levels.  相似文献   

20.
We examined the integration site of avian oncornaviruses in the genome of different hosts with respect to the repetitive frequency of the cellular DNA sequences adjacent to the integrated proviral DNA. The following systems were studied: avian sarcoma virus (B-77) and avian leukosis virus (Rous-associated virus-61) in cultured duck embryonic cells and B-77 in cultured mouse 3T3 cells. These systems represent different host responses to viral infection, i.e., one in which both cellular transformation and viral replication occur (B-77-infected duck cells), one in which viral replication, but not transformation, occurs (Rous-associated virus-61-infected duck cells), and one in which transformation, but not viral replication, occurs (B-77-infected 3T3 cells). Two sequential hybridizations were used. First, large denatured DNA fragments (2.8 X 10(6) daltons) were reassociated to different C0t (mole-seconds per liter) values. Next, DNA remaining single stranded at different C0t values was isolated by hydroxylapatite column chromatography, immobilized on nitrocellulose filters, and hybridized with an excess of 3H-labeled 35S viral RNA to titrate the concentration of proviral DNA. Results show that B-77 sarcoma virus and Rous-associated virus-61 integrate in the unique region of duck DNA, whereas B-77 proviral DNA is associated with both repeated and unique host DNA sequences in transformed mouse 3T3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号