首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 639 毫秒
1.
Salmonella typhimurium exhibits a distinct tropism for mouse enterocytes that is linked to their expression of type 1 fimbriae. The distinct binding traits of Salmonella type 1 fimbriae is also reflected in their binding to selected mannosylated proteins and in their ability to promote secondary bacterial aggregation on enterocyte surfaces. The determinant of binding in Salmonella type 1 fimbriae is a 35-kDa structurally distinct fimbrial subunit, FimHS, because inactivation of fimHS abolished binding activity in the resulting mutant without any apparent effect on fimbrial expression. Surprisingly, when expressed in the absence of other fimbrial components and as a translational fusion protein with MalE, FimHS failed to demonstrate any specific binding tropism and bound equally to all cells and mannosylated proteins tested. To determine if the binding specificity of Salmonella type 1 fimbriae was determined by the fimbrial shaft that is intimately associated with FimHS, we replaced the amino-terminal half of FimHS with the corresponding sequence from Escherichia coli FimH (FimHE) that contains the receptor binding domain of FimHE. The resulting hybrid fimbriae bearing FimHES on a Salmonella fimbrial shaft exhibited binding traits that resembled that of Salmonella rather than E. coli fimbriae. Apparently, the quaternary constraints imposed by the fimbrial shaft on the adhesin determine the distinct binding traits of S. typhimurium type 1 fimbriae.  相似文献   

2.
We have chemically synthesized oligopeptides corresponding to the NH2-terminal stretch of two gene products, designated FimG and FimH, of the fim gene cluster of Escherichia coli. These synthetic peptides, designated S-T1FimG(1-16) and S-T1FimH(1-25)C, evoked antibodies in rabbits that reacted with 14- and 29-kilodalton subunits, respectively, of dissociated fimbriae encoded by the recombinant plasmid pSH2 carrying the genetic information for the synthesis and expression of functional type 1 fimbriae. Neither of these fimbrial proteins was detected in dissociated fimbrial preparations from nonadhesive E. coli cells carrying the mutant plasmid pUT2002, containing a restriction site-specific deletion of fimG and fimH. Anti-S-T1FimH(1-25)C inhibited the adherence of type 1 fimbriated E. coli to epithelial cells. Immunoelectron microscopy revealed that anti-S-T1FimH(1-25)C, but not anti-S-T1FimG(1-16), bound to intact type 1 fimbriae of E. coli at the fimbrial tips and at long intervals along the fimbrial filaments. Anti-S-T1FimG(1-16) appeared to be directed at epitopes not accessible on the intact fimbriae and consequently failed to bind to intact fimbriae or to block fimbrial attachment. Our results suggest that the fimG and fimH gene products are components of type 1 fimbriae and that FimH may be the tip adhesin mediating the binding of type 1 fimbriated E. coli to D-mannose residues on mucosal surfaces.  相似文献   

3.
Valency conversion in the type 1 fimbrial adhesin of Escherichia coli   总被引:1,自引:0,他引:1  
FimH protein is a lectin-like adhesive subunit of type 1, or mannose-sensitive, fimbriae that are found on the surface of most Escherichia coli strains. All naturally occurring FimH variants demonstrate a conserved mannotriose-specific (i.e. multivalent) binding. Here, we demonstrate that replacement of residues 185-279 within the FimH pilin domain with a corresponding segment of the type 1C fimbrial adhesin FocH leads to a loss of the multivalent mannotriose-specific binding property accompanied by the acquisition of a distinct monomannose-specific (i.e. monovalent) binding capability. Bacteria expressing the monovalent hybrid adhesins were capable of binding strongly to uroepithelial tissue culture cells and guinea pig erythrocytes. They could not, however, agglutinate yeast or bind human buccal cells -- functions readily accomplished by the E. coli-expressing mannotriose-specific FimH variants. Based on the relative potency of inhibiting compounds of different structures, the receptor binding site within monovalent FimH-FocH adhesin has an extended structure with an overall configuration similar to that within the multivalent FimH of natural origin. The monomannose-only specific phenotype could also be invoked by a single point mutation, E89K, located within the lectin domain of FimH, but distant from the receptor binding site. The structural alterations influence the receptor-binding valency of the FimH adhesin via distal effects on the combining pocket, obviously by affecting the FimH quaternary structure.  相似文献   

4.
Type 1 fimbriae of Escherichia coli mediate mannose-specific adhesion to host epithelial surfaces and consist of a major, antigenically variable pilin subunit, FimA, and a minor, structurally conserved adhesive subunit, FimH, located on the fimbrial tip. We have analysed the variability of fimA and fimH in strains of vaginal and other origin that belong to one of the most prominent clonal groups of extraintestinal pathogenic E. coli, comprised of O1:K1-, O2:K1- and O18:K1-based serotypes. Multiple locus sequence typing (MLST) of this group revealed that the strains have identical (at all but one nucleotide position) eight housekeeping loci around the genome and belong to the ST95 complex defined by the publicly available E. coli MLST database. Multiple highly diverse fimA alleles have been introduced into the ST95 clonal complex via horizontal transfer, at a frequency comparable to that of genes defining the major O- and H-antigens. However, no further significant FimA diversification has occurred via point mutation after the transfers. In contrast, while fimH alleles also move horizontally (along with the fimA loci), they acquire point amino acid replacements at a higher rate than either housekeeping genes or fimA. These FimH mutations enhance binding to monomannose receptors and bacterial tropism for human vaginal epithelium. A similar pattern of rapid within-clonal structural evolution of the adhesive, but not pilin, subunit is also seen, respectively, in papG and papA alleles of the di-galactose-specific P-fimbriae. Thus, while structurally diverse pilin subunits of E. coli fimbriae are under selective pressure for frequent horizontal transfer between clones, the adhesive subunits of extraintestinal E. coli are under strong positive selection (Dn/Ds > 1 for fimH and papG) for functionally adaptive amino acid replacements.  相似文献   

5.
Adhesion to brain microvascular endothelial cells, which constitute the blood-brain barrier is considered important in Escherichia coli K1 bacterial penetration into the central nervous system. Type 1 fimbriae are known to mediate bacterial interactions with human brain microvascular endothelial cells (HBMEC). Here, we demonstrate that type 1 fimbriae, specifically FimH adhesin is not only an adhesive organelle that provides bacteria with a foothold on brain endothelial cells but also triggers signalling events that promote E. coli K1 invasion in HBMEC. This is shown by our demonstrations that exogenous FimH increases cytosolic-free-calcium levels as well as activates RhoA. Using purified recombinant mannose-recognition domain of FimH, we identified a glycosylphosphatidylinositol-anchored receptor, CD48, as a putative HBMEC receptor for FimH. Furthermore, E. coli K1 binding to and invasion of HBMEC were blocked by CD48 antibody. Taken together, these findings indicate that FimH induces host cell signalling cascades that are involved in E. coli K1 invasion of HBMEC and CD48 is a putative HBMEC receptor for FimH.  相似文献   

6.
We determined whether the molecular structures through which force is applied to receptor–ligand pairs are tuned to optimize cell adhesion under flow. The adhesive tethers of our model system, Escherichia coli, are type I fimbriae, which are anchored to the outer membrane of most E. coli strains. They consist of a fimbrial rod (0.3–1.5 μm in length) built from a helically coiled structural subunit, FimA, and an adhesive subunit, FimH, incorporated at the fimbrial tip. Previously reported data suggest that FimH binds to mannosylated ligands on the surfaces of host cells via catch bonds that are enhanced by the shear-originated tensile force. To understand whether the mechanical properties of the fimbrial rod regulate the stability of the FimH–mannose bond, we pulled the fimbriae via a mannosylated tip of an atomic force microscope. Individual fimbriae rapidly elongate for up to 10 μm at forces above 60 pN and rapidly contract again at forces below 25 pN. At intermediate forces, fimbriae change length more slowly, and discrete 5.0 ± 0.3–nm changes in length can be observed, consistent with uncoiling and coiling of the helical quaternary structure of one FimA subunit at a time. The force range at which fimbriae are relatively stable in length is the same as the optimal force range at which FimH–mannose bonds are longest lived. Higher or lower forces, which cause shorter bond lifetimes, cause rapid length changes in the fimbria that help maintain force at the optimal range for sustaining the FimH–mannose interaction. The modulation of force and the rate at which it is transmitted from the bacterial cell to the adhesive catch bond present a novel physiological role for the fimbrial rod in bacterial host cell adhesion. This suggests that the mechanical properties of the fimbrial shaft have codeveloped to optimize the stability of the terminal adhesive under flow.  相似文献   

7.
8.
Despite sharing the name and the ability to mediate mannose-sensitive adhesion, the type 1 fimbrial FimH adhesins of Salmonella Typhimurium and Escherichia coli share only 15% sequence identity. In the present study, we demonstrate that even with this limited identity in primary sequence, these two proteins share remarkable similarity of complex receptor binding and structural properties. In silico simulations suggest that, like E. coli FimH, Salmonella FimH has a two-domain tertiary structure topology, with a mannose-binding pocket located on the apex of a lectin domain. Structural analysis of mutations that enhance S. Typhimurium FimH binding to eukaryotic cells and mannose-BSA demonstrated that they are not located proximal to the predicted mannose-binding pocket but rather occur in the vicinity of the predicted interface between the lectin and pilin domains of the adhesin. This implies that the functional effect of such mutations is indirect and probably allosteric in nature. By analogy with E. coli FimH, we suggest that Salmonella FimH functions as an allosteric catch bond adhesin, where shear-induced separation of the lectin and pilin domains results in a shift from a low affinity to a high affinity binding conformation of the lectin domain. Indeed, we observed shear-enhanced binding of whole bacteria expressing S. Typhimurium type 1 fimbriae. In addition, we observed that anti-FimH antibodies activate rather than inhibit S. Typhimurium FimH mannose binding, consistent with the allosteric catch bond properties of this adhesin.  相似文献   

9.
We determined whether the molecular structures through which force is applied to receptor–ligand pairs are tuned to optimize cell adhesion under flow. The adhesive tethers of our model system, Escherichia coli, are type I fimbriae, which are anchored to the outer membrane of most E. coli strains. They consist of a fimbrial rod (0.3–1.5 μm in length) built from a helically coiled structural subunit, FimA, and an adhesive subunit, FimH, incorporated at the fimbrial tip. Previously reported data suggest that FimH binds to mannosylated ligands on the surfaces of host cells via catch bonds that are enhanced by the shear-originated tensile force. To understand whether the mechanical properties of the fimbrial rod regulate the stability of the FimH–mannose bond, we pulled the fimbriae via a mannosylated tip of an atomic force microscope. Individual fimbriae rapidly elongate for up to 10 μm at forces above 60 pN and rapidly contract again at forces below 25 pN. At intermediate forces, fimbriae change length more slowly, and discrete 5.0 ± 0.3–nm changes in length can be observed, consistent with uncoiling and coiling of the helical quaternary structure of one FimA subunit at a time. The force range at which fimbriae are relatively stable in length is the same as the optimal force range at which FimH–mannose bonds are longest lived. Higher or lower forces, which cause shorter bond lifetimes, cause rapid length changes in the fimbria that help maintain force at the optimal range for sustaining the FimH–mannose interaction. The modulation of force and the rate at which it is transmitted from the bacterial cell to the adhesive catch bond present a novel physiological role for the fimbrial rod in bacterial host cell adhesion. This suggests that the mechanical properties of the fimbrial shaft have codeveloped to optimize the stability of the terminal adhesive under flow.  相似文献   

10.
FimH is the type?1 fimbrial tip adhesin and invasin of Escherichia coli. Its ligands are the glycans on specific proteins enriched in membrane microdomains. FimH binding shows high-affinity recognition of paucimannosidic glycans, which are shortened high-mannose glycans such as oligomannose-3 and -5. FimH can recognize equally the (single) high-mannose glycan on uroplakin Ia, on the urinary defence protein uromodulin or Tamm-Horsfall glycoprotein and on the intestinal GP2 glycoprotein present in Peyer's patches. E. coli bacteria may attach to epithelial cells via hundreds of fimbriae in a multivalent fashion. This binding is considered to provoke conformational changes in the glycoprotein receptor that translate into signalling in the cytoplasm of the infected epithelial cell. Bladder cell invasion by the uropathogenic bacterium is the prelude to recurrent and persistent urinary tract infections in humans. Patients suffering from diabetes mellitus are more prone to contract urinary tract infections. In a study of women, despite longer treatments with a more potent antibiotic, these patients also have more often recurrences of urinary tract infections compared with women without diabetes. Type?1 fimbriae are the most important virulence factors used not only for adhesion of E. coli in the urinary tract, but also for the colonization by E. coli in patients with Crohn's disease or ulcerative colitis. It appears that the increased prevalence of urinary tract infections in diabetic women is not the result of a difference in the bacteria, but is due to changes in the uroepithelial cells leading to an increased adherence of E. coli expressing type?1 fimbriae. Hypothetically, these changes are in the glycosylation of the infected cells. The present article focuses on possible underlying mechanisms for glycosylation changes in the uroepithelial cell receptors for FimH. Like diabetes, bacterial adhesion induces apoptosis that may bring the endoplasmic reticulum membrane with immature mannosylated glycoproteins to the surface. Indicatively, clathrin-mediated vesicle trafficking of glucose transporters is disturbed in diabetics, which would interfere further with the biosynthesis and localization of complex N-linked glycans.  相似文献   

11.
Autoaggregation is a phenomenon thought to contribute to colonization of mammalian hosts by pathogenic bacteria. Type 1 fimbriae are surface organelles of Escherichia coli that mediate d-mannose-sensitive binding to various host surfaces. This binding is conferred by the minor fimbrial component FimH. In this study, we have used random mutagenesis to identify variants of the FimH adhesin that confer the ability of E. coli to autoaggregate and settle from liquid cultures. Three separate autoaggregating clones were identified, all of which contained multiple amino acid changes located within the N-terminal receptor-binding domain of FimH. Autoaggregation could not be inhibited by mannose, but was inhibited by growth at temperatures at or below 30 degrees C. Using green fluorescent protein (GFP) as a reporter, we show that the autoaggregating clones do not mix with wild-type fimbriated cells. Electron microscopy shows that autoaggregating cells produce fimbriae with a twisted and entangled appearance. We present evidence that autoaggregating versions of FimH also occur in nature. Our results stress the highly adaptive nature of the ubiquitous FimH adhesin.  相似文献   

12.
Four novel mrkD alleles namely mrkD(V1), mrkD(V2), mrkD(V3), and mrkD(V4) were identified in seventeen Klebsiella pneumoniae meningitis strains using PCR-RFLP and sequence determination. Comparative analysis revealed a most variable region containing an RGD motif in the receptor domain of MrkD(V3). In order to determine if the sequence confers the K. pneumoniae mrkD(V3) the highest level of the fimbrial activity, a type 3 fimbriae display system was constructed in Escherichia coli. The E. coli JM109[pmrkABCD(V3)F] displaying meshwork-like fimbriae also had the most fimbrial activity, supporting a possible role of the varied sequences. In a dose-dependent manner, the GRGDSP hexapeptide appeared to inhibit the adhesion of the E. coli JM109[pmrkABCD(V3)F] to HCT-8, an ileocecal epithelial cell line. In addition, the adhesion activity was reduced by the addition of anti-alpha5beta1 integrin monoclonal antibody, indicating that the RGD containing region in MrkD(V3) is responsible for the binding of type 3 fimbriae to integrin.  相似文献   

13.
Type 1 fimbriae are assembled by the chaperone–usher pathway where periplasmic protein complexes formed between fimbrial subunits and the FimC chaperone are recruited by the outer membrane protein FimD (the usher) for their ordered polymerization and export. FimH adhesin initiates and stimulates type 1 fimbriae polymerization by interacting with FimD. Previously we showed that the N-terminal lectin domain of FimH (N-FimH) is necessary for binding of the adhesin to FimD. In this work, we have selected mutants in N-FimH that reduce the levels of adhesin and type 1 fimbriae displayed in Escherichia coli without altering the levels of FimH in the periplasm. The selected mutations are mostly concentrated in residues G15, N46 and D47. In contrast to other mutations isolated that simply affect binding of FimH to FimD (e.g. C3Y), these variants associate to FimD and alter its susceptibility to trypsin digestion similarly to wild-type FimH. Importantly, their mutant phenotype is rescued when FimD is activated in vivo by the coexpression of wild-type FimH. Altogether, these data indicate that residues G15, N46 and D47 play an important role following initial binding of FimH to FimD for efficient type 1 fimbriae polymerization by this outer membrane usher.  相似文献   

14.
Strains of Klebsiella pneumoniae are known to express two morphologically and functionally distinct filaments, the type 3 and the type 1 fimbriae. The gene (mrkD) encoding the adhesion of K. pneumoniae type 3 fimbriae was identified by transcomplementation analysis with the pap fimbrial gene cluster of Escherichia coli. The nucleotide sequence of the mrkD gene was determined. In addition, the determinant coding for the K. pneumoniae type 1 fimbrial adhesion was identified, and its nucleotide sequence was deduced. The predicted amino acid sequences of the K. pneumoniae adhesion proteins are compared, and similarities with the major fimbrial structural proteins (MrkA and FimA) are discussed.  相似文献   

15.
Escherichia coli type 1 fimbriae are composed of subunits, each of which comprises 158 amino acids. We synthesized a copy of a 13-residue peptide, located near the NH2 terminus of the fimbrial subunit, that assumed some of the properties of type 1 fimbriae. At pH 5.5 the synthetic peptide autoassembled into fibrillar structures that resembled type 1 fimbriae except that they appeared less rigid and rodlike. A quaternary structure-specific monoclonal antibody against type 1 fimbriae recognized the synthetic peptide in the assembled but not the unassembled state. Furthermore, when the synthetic peptide was injected in its fimbrial conformation into rabbits, it evoked antibodies that reacted with type 1 fimbriae isolated from E. coli.  相似文献   

16.
Type 1 fimbriae are heteropolymeric surface organelles responsible for the D-mannose-sensitive (MS) adhesion of Escherichia coli. We recently reported that variation of receptor specificity of type 1 fimbriae can result solely from minor alterations in the structure of the gene for the FimH adhesin subunit. To further study the relationship between allelic variation of the fimH gene and adhesive properties of type 1 fimbriae, the fimH genes from five additional strains were cloned and used to complement the FimH deletion in E. coli KB18. When the parental and recombinant strains were tested for adhesion to immobilized mannan, a wide quantitative range in the ability of bacteria to adhere was noted. The differences in adhesion do not appear to be due to differences in the levels of fimbriation or relative levels of incorporation of FimH, because these parameters were similar in low-adhesion and high-adhesion strains. The nucleotide sequence for each of the fimH genes was determined. Analysis of deduced FimH sequences allowed identification of two sequence homology groups, based on the presence of Asn-70 and Ser-78 or Ser-70 and Asn-78 residues. The consensus sequences for each group conferred very low adhesion activity, and this low-adhesion phenotype predominated among a group of 43 fecal isolates. Strains isolated from a different host niche, the urinary tract, expressed type 1 fimbriae that conferred an increased level of adhesion. The results presented here strongly suggest that the quantitative variations in MS adhesion are due primarily to structural differences in the FimH adhesin. The observed differences in MS adhesion among populations of E. coli isolated from different host niches call attention to the possibility that phenotypic variants of FimH may play a functional role in populations dynamics.  相似文献   

17.
Combining sites of bacterial fimbriae   总被引:1,自引:0,他引:1  
The few known crystal structures of receptor-binding domains of fimbrial tip adhesins, FimH, PapGII, and F17G, tell us that each of these structures is unique and surprising. Despite little to no sequence identity, common to them all is their variable immunoglobulin (Ig)-fold. Nevertheless, their glycan-binding sites have evolved in different locations onto this similar scaffold, and with distinct, highly specific binding properties. Difficult to capture is the often dominant role played by the fimbrial shaft in host cell recognition and biofilm formation. The major pilin FaeG, building up the shaft of F4 fimbriae, also harbors the carbohydrate receptor-binding property and has thereto an enlarged Ig-domain, with the insertion of two beta-strands and two alpha-helices. Bordetella and CFA/I fimbriae combine a tip adhesin with major subunit adhesins. Still other fimbriae incorporate a specialized invasin at the very tip of polyadhesive fibers for uptake of bacteria in cells of the immune system and host epithelia. Finally, glycan recognition by fimbrial adhesins has often been found to coincide with the binding of cell-surface integrins and components of the extracellular matrix, such as collagen IV and laminin.  相似文献   

18.
Type 1 fimbriae are surface organelles on Escherichia coli, which mediate specific binding to D-mannose-containing structures. These fimbriae are heteropolymers composed of a major building element, the FimA protein, and small amounts of the FimF, FimG and FimH proteins. The FimH protein is uniquely responsible for the D-mannose receptor binding. In this work data are presented which indicate that the major subunit of type 1 fimbriae is dispensable for D-mannose-specific binding. A recombinant strain was studied which harboured an insertional deletion in the fimA gene, and was thereby unable to produce type 1 fimbriae; however, it was still able to express a D-mannose-binding phenotype. However, the deletion resulted in a 25-fold reduction of the adhesive potential, as measured by binding to D-mannose-coated Sepharose beads. Serological and specific receptor binding evidence is presented that suggests that the FimH adhesion is capable of being exposed on the bacterial surface without being an integral part of the fimbriae.  相似文献   

19.
Escherichia coli strains are able to cause intestinal (enteritis, diarrhoeal diseases) and extraintestinal (urinary tract infections, sepsis, meningitis) infections. Most pathogenic E. coli strains produce specific fimbrial adhesins, which represent essential colonization factors: intestinal E. coli strains very often carry transferable plasmids with gene clusters specific for fimbrial adhesins, like K88 and K99, or colonization factor antigens (CFA) I and II. In contrast, the fimbrial gene clusters of extraintestinal E. coli strains, such as P, S, or F1C fimbriae, are located on the chromosomes. The fimbrial adhesin complexes consist of major and minor subunit proteins. Their binding specificity can generally be assayed in hemagglutination tests. In the case of fimbrial adhesins of intestinal E. coli strains, the major subunit proteins preferentially represent the hemagglutinating adhesins, whereas minor subunit proteins are the hemagglutinins of extraintestinal E. coli strains. Recently "alternative" adhesin proteins were identified, which have the capacity to bind to eukaryotic structures different from the receptors of the erythrocytes. Fimbrial adhesins are not constitutively expressed but are stringently regulated on the molecular level. Extraintestinal E. coli wild-type strains normally carry three or more fimbrial adhesin determinants, which have the capacity to influence the expression of one another (cross talk). Furthermore the fimbrial gene clusters undergo phase variation, which seems to be important for their contribution to pathogenesis of E. coli.  相似文献   

20.
The adherence of uropathogenic Escherichia coli to the urothelial surface, a critical first step in the pathogenesis of urinary tract infection (UTI), is controlled by three key elements: E. coli adhesins, host receptors, and host defense mechanisms. Although much has been learned about E. coli adhesins and their urothelial receptors, little is known about the role of host defense in the adherence process. Here we show that Tamm-Horsfall protein (THP) is the principal urinary protein that binds specifically to type 1 fimbriated E. coli, the main cause of UTI. The binding was highly specific and saturable and could be inhibited by d-mannose and abolished by endoglycosidase H treatment of THP, suggesting that the binding is mediated by the high-mannose moieties of THP. It is species-conserved, occurring in both human and mouse THPs. In addition, the binding to THP was much greater with an E. coli strain bearing a phenotypic variant of the type 1 fimbrial FimH adhesin characteristic of those prevalent in UTI isolates compared with the one prevalent in isolates from the large intestine of healthy individuals. Finally, a physiological concentration of THP completely abolished the binding of type 1 fimbriated E. coli to uroplakins Ia and Ib, two putative urothelial receptors for type 1 fimbriae. These results establish, on a functional level, that THP contains conserved high-mannose moieties capable of specific interaction with type 1 fimbriae and strongly suggest that this major urinary glycoprotein is a key urinary anti-adherence factor serving to prevent type 1 fimbriated E. coli from binding to the urothelial receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号