首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This research explores the distributions and community composition of pelagic species in the sub-Arctic and Arctic waters of the northern Bering and central and southern Chukchi seas during September 2007 by linking pelagic zooplankton and fish assemblages to water masses. Juvenile saffron cod (Eleginus gracilis), polar cod (Boreogadus saida), and shorthorn sculpin (Myoxocephalus scorpius) were most abundant in warm, low salinity Alaska Coastal Water (ACW) of the central Chukchi Sea, characterized by low chlorophyll, low nutrients, and small zooplankton taxa. Adult Pacific herring (Clupea pallasii) were more abundant in the less stratified Bering Strait waters and in the colder, saltier Bering Shelf Water of the northern Bering and southern Chukchi seas, characterized by high chlorophyll, high nutrients, and larger zooplankton taxa. Juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon were most abundant in the less stratified ACW in the central Chukchi Sea and Bering Strait. Abundances of large zooplankton were dominated by copepods (Eucalanus bungii, Calanus glacialis/marshallae, Metridia pacifica) followed by euphausiids (juvenile Thysanoessa raschii and unidentified taxa), whereas small zooplankton were dominated by bivalve larvae and copepods (Centropages abdominalis, Oithona similis, Pseudocalanus sp.). Pelagic community composition was related to environmental factors, with highest correlations between bottom salinity and large zooplankton taxa, and latitude and fish species. These data were collected in a year with strong northward retreat of summer sea ice and therefore provide a baseline for assessing the effects of future climate warming on pelagic ecosystems in sub-Arctic and Arctic regions.  相似文献   

2.
Migrations are often influenced by seasonal environmental gradients that are increasingly being altered by climate change. The consequences of rapid changes in Arctic sea ice have the potential to affect migrations of a number of marine species whose timing is temporally matched to seasonal sea ice cover. This topic has not been investigated for Pacific Arctic beluga whales (Delphinapterus leucas) that follow matrilineally maintained autumn migrations in the waters around Alaska and Russia. For the sympatric Eastern Chukchi Sea (‘Chukchi’) and Eastern Beaufort Sea (‘Beaufort’) beluga populations, we examined changes in autumn migration timing as related to delayed regional sea ice freeze‐up since the 1990s, using two independent data sources (satellite telemetry data and passive acoustics) for both populations. We compared dates of migration between ‘early’ (1993–2002) and ‘late’ (2004–2012) tagging periods. During the late tagging period, Chukchi belugas had significantly delayed migrations (by 2 to >4 weeks, depending on location) from the Beaufort and Chukchi seas. Spatial analyses also revealed that departure from Beaufort Sea foraging regions by Chukchi whales was postponed in the late period. Chukchi beluga autumn migration timing occurred significantly later as regional sea ice freeze‐up timing became later in the Beaufort, Chukchi, and Bering seas. In contrast, Beaufort belugas did not shift migration timing between periods, nor was migration timing related to freeze‐up timing, other than for southward migration at the Bering Strait. Passive acoustic data from 2008 to 2014 provided independent and supplementary support for delayed migration from the Beaufort Sea (4 day yr?1) by Chukchi belugas. Here, we report the first phenological study examining beluga whale migrations within the context of their rapidly transforming Pacific Arctic ecosystem, suggesting flexible responses that may enable their persistence yet also complicate predictions of how belugas may fare in the future.  相似文献   

3.
Early summer in the Arctic with extensive ice melt and break-up represents a dramatic change for sympagic–pelagic fauna below seasonal sea ice. As part of the International Polar Year-Circumpolar Flaw Lead system study (IPY-CFL), this investigation quantified zooplankton in the meltwater layer below landfast ice and remaining ice fauna below melting ice during June (2008) in Franklin Bay and Darnley Bay, Amundsen Gulf, Canada. The ice was in a state of advanced melt, with fully developed melt ponds. Intense melting resulted in a 0.3- to 0.5-m-thick meltwater layer below the ice, with a strong halocline to the Arctic water below. Zooplankton under the ice, in and below the meltwater layer, was sampled by SCUBA divers. Dense concentrations (max. 1,400 ind. m−3) of Calanus glacialis were associated with the meltwater layer, with dominant copepodid stages CIV and CV and high abundance of nauplii. Less abundant species included Pseudocalanus spp., Oithona similis and C. hyperboreus. The copepods were likely feeding on phytoplankton (0.5–2.3 mg Chl-a m−3) in the meltwater layer. Ice amphipods were present at low abundance (<10 ind. m−2) and wet biomass (<0.2 g m−2). Onisimus glacialis and Apherusa glacialis made up 64 and 51% of the total ice faunal abundance in Darnley Bay and Franklin Bay, respectively. During early summer, the autochthonous ice fauna becomes gradually replaced by allochthonous zooplankton, with an abundance boom near the meltwater layer. The ice amphipod bust occurs during late stages of melting and break-up, when their sympagic habitat is diminished then lost.  相似文献   

4.
The Pacific Arctic marine ecosystem has undergone rapid changes in recent years due to ocean warming, sea ice loss, and increased northward transport of Pacific-origin waters into the Arctic. These climate-mediated changes have been linked to range shifts of juvenile and adult subarctic (boreal) and Arctic fish populations, though it is unclear whether distributional changes are also occurring during the early life stages. We analyzed larval fish abundance and distribution data sampled in late summer from 2010 to 2019 in two interconnected Pacific Arctic ecosystems: the northern Bering Sea and Chukchi Sea, to determine whether recent warming and loss of sea ice has restricted habitat for Arctic species and altered larval fish assemblage composition from Arctic- to boreal-associated taxa. Multivariate analyses revealed the presence of three distinct multi-species assemblages across all years: (1) a boreal assemblage dominated by yellowfin sole (Limanda aspera), capelin (Mallotus catervarius), and walleye pollock (Gadus chalcogrammus); (2) an Arctic assemblage composed of Arctic cod (Boreogadus saida) and other common Arctic species; and (3) a mixed assemblage composed of the dominant species from the other two assemblages. We found that the wind- and current-driven northward advection of warmer, subarctic waters and the unprecedented low-ice conditions observed in the northern Bering and Chukchi seas beginning in 2017 and persisting into 2018 and 2019 have precipitated community-wide shifts, with the boreal larval fish assemblage expanding northward and offshore and the Arctic assemblage retreating poleward. We conclude that Arctic warming is most significantly driving changes in abundance at the leading and trailing edges of the Chukchi Sea larval fish community as boreal species increase in abundance and Arctic species decline. Our analyses document how quickly larval fish assemblages respond to environmental change and reveal that the impacts of Arctic borealization on fish community composition spans multiple life stages over large spatial scales.  相似文献   

5.
The biomass and productivity of sea ice algae was assessed in the northwestern Barents Sea in May 2004. Sea ice algal pigment content was patchy with a mean of 18.5 ± 8.9 mg Chla m−2. The algal community was dominated by the diatom Nitzschia frigida. Primary production measured by 14C incubations was between 0.37 and 2.8 mg C m−2 h−1, which compared well with oxygen-based methods using the diffusive boundary layer approach (0.071–1.1 mg C m−2 h−1). Given the differences in the irradiances under which these two sets of measurements were made, there was a strong level of consistency between the two sets of results. Measurements of primary production were consistent with previous Arctic measurements but high spatial heterogeneity made a regional estimate of production inappropriate.  相似文献   

6.
During the last few years, extensive sea ice melting in the Arctic due to climate change has been detected, which could potentially modify the organic carbon fluxes in these waters. In this study, the effect of sea ice melting on bacterial carbon channelling by phages and protists has been evaluated in the northern Greenland Sea and Arctic Ocean. Grazing on bacteria by protists was evaluated using the FLB disappearance method. Lysis of bacteria due to viral infections was measured using the virus reduction approach. Losses of bacterial production caused by protists (PMMBP) dominated losses caused by viruses (VMMBP) throughout the study. Lysogenic viral production was detected in 7 out of 21 measurements and constituted from 33.9 to 100.0% of the total viral production. Significantly higher PMMBP and lower VMMBP were detected in waters affected by ice melting compared with unaffected waters. Consequently, significantly more bacterial carbon was channelled to the higher trophic levels in affected waters (13.05 ± 5.98 μgC l−1 day−1) than in unaffected waters (8.91 ± 8.33 μgC l−1 day−1). Viruses channelled 2.63 ± 2.45 μgC l−1 day−1 in affected waters and 4.27 ± 5.54 μgC l−1 day−1 in unaffected waters. We conclude that sea ice melting in the Arctic could modify the carbon flow through the microbial food web. This process may be especially important in the case of massive sea ice melting due to climate change.  相似文献   

7.
Zooplankton was studied on eight stations in the marginal icezone (MIZ) of the Barents Sea, in May 1999, along two transectsacross the ice edge. On each station, physical background measurementsand zooplankton samples were taken every 6 h over a 24 h periodat five discrete depth intervals. Cluster analysis revealedseparation of open water stations from all ice stations as wellas high similarity level among replicates belonging to particularstation. Based on five replicates per station, analysis of variance(ANOVA) confirmed significant differences (P < 0.05) in abundancesof the main mesozooplankton taxa among stations. Relations betweenthe zooplankton community and environmental parameters wereestablished using redundancy analysis (CANOCO). In total, 55%of mesozooplankton variability within studied area was explainedby eight variables with significant conditional effects: depthstratum, fluorescence, temperature, salinity, bottom depth,latitude, bloom situation, and ice concentration. GLM modelssupported supposition about clear and negative relationshipbetween concentration of Oithona similis, and overall mesozooplanktondiversity. The analyses showed a dynamic relationship betweenmesozooplankton distribution and hydrological conditions onshort-term scale. Furthermore, our study demonstrated that variabilityin the physical environment of dynamic MIZ of the Barents Seahas measurable effect on the Arctic pelagic ecosystem.  相似文献   

8.
Integral parameters of zooplankton community, including species diversity and its components were compared between the Chukchi Sea, Bering Sea, Sea of Okhotsk, Sea of Japan, and adjacent Pacific waters based on the data obtained by standard Juday net with a mouth area of 0.1 m2 during the large-scale surveys conducted by the Pacific Fisheries Research Center (TINRO Center) in 1984–2013. These parameters were calculated for the total surveyed area of approximately 7.0 million km2 and separately for each of the considered water bodies. In Pacific waters, species richness is higher than that in all the seas, while the concentration of individuals (expressed in terms of abundance, ind./m3) and evenness of their distribution over species were lower. The only sea with a larger mean size of organisms compared to the ocean is the Bering Sea. A lower species diversity than in the ocean has been recorded only from the Chukchi Sea; a lower density (in terms of biomass, g/m3) was determined only from the Sea of Japan. Among the four seas, the Chukchi Sea ranks first in terms of biomass and abundance of zooplankton, second in species evenness, third in the mean size of individuals, and last in species richness and diversity. The Bering Sea ranks first in terms of mean size of plankton organisms, second in species richness, diversity, and biomass, third in abundance, and last in species evenness. The Sea of Okhotsk ranks second in terms of mean size of individuals, last in their abundance, and third in the other parameters. The Sea of Japan ranks first in terms of species richness, evenness, and diversity, second in abundance, and last in mean size of zooplankton organisms, and, therefore, their biomass. The biomass of zooplankton, in accordance with the concentration of nutrients, increases in the southto-north direction (while its absolute abundance depends largely on the size of the body of water). The mean size of organisms increases in the same direction; the evenness of their distribution over species increases in the reverse direction (with the exception of both parameters for the Chukchi Sea). The rank of a water body for its biodiversity coincides with the species richness rank. The latter increases from north to south (except for the Okhotsk Sea), but greatly depends on the surveyed area and, even more, on the surveyed volume of water. A study of the literature data found some unexpected statistically significant relationships of the integral parameters of zooplankton with those of pelagic and bottom macrofauna, as well as with the parameters of zooplankton production, on the size of the considered bodies of water. The causes and the biological meanings of most of these relationships still do not have any rational interpretation. Their testing at other spatial scales will be continued in future works.  相似文献   

9.

Aim

Climate change is fundamentally altering habitats, with complex consequences for species across the globe. The Arctic has warmed 2–3 times faster than the global average, and unprecedented sea ice loss can have multiple outcomes for ice‐associated marine predators. Our goal was to assess impacts of sea ice loss on population‐specific habitat and behaviour of a migratory Arctic cetacean.

Location

Arctic Ocean.

Methods

Using satellite telemetry data collected during summer‐fall from sympatric beluga whale (Delphinapterus leucas) populations (“Chukchi” and “Beaufort” belugas), we applied generalized estimating equations to evaluate shifts in sea ice habitat associations and diving behaviour during two periods: 1993–2002 (“early”) and 2004–2012 (“late”). We used resource selection functions to assess changes in sea ice selection as well as predict trends in habitat selection and “optimal” habitat, based on satellite‐derived sea ice data from 1990 to 2014.

Results

Sea ice cover declined substantially between periods, and Chukchi belugas specifically used significantly lower sea ice concentrations during the late than early period. Use of bathymetric features did not change between periods for either population. Population‐specific sea ice selection, predicted habitat and the amount of optimal habitat also generally did not change during 1990–2014. Chukchi belugas tracked during 2007–2012 made significantly more long‐duration and deeper dives than those tracked during 1998–2002.

Main conclusions

Taken together, our results suggest bathymetric parameters are consistent predictors of summer‐fall beluga habitat rather than selection for specific sea ice conditions during recent sea ice loss. Beluga whales were able to mediate habitat change despite their sea ice associations. However, trends towards prolonged and deeper diving possibly indicate shifting foraging opportunities associated with ecological changes that occur in concert with sea ice loss. Our results highlight that responses by some Arctic marine wildlife can be indirect and variable among populations, which could be included in predictions for the future.
  相似文献   

10.
The data from the expedition of the program RUSALCA conducted in 2004 showed unexpectedly high quantitative indices of macrobenthos in the southeastern Chukchi Sea. Extensive areas of the bottom northwest of the Bering Strait were dominated by the bivalve Macoma calcarea. The greatest biomass of benthos in Macoma-dominated areas was 4232 g/m2 with an average of 1382 g/m2 for the investigated region. Such a high biomass of soft-bottom communities, which is extremely uncommon even in the temperature regions of the oceans, is reported for the Arctic for the first time. The long-term existence (more than 70 years) of highly productive benthic communities dominated by Macoma calcarea in one and the same area of the Chukchi Sea can most likely be attributed to gyres, which constantly arise in the region northwest of the Bering Strait. These cyclonic gyres carry nutrient-rich bottom water to the surface and hinder larval transport away from mother populations. They also keep and concentrate major food sources of benthos (live and dead phyto-and zooplankton and fecal pellets) over the benthic community locations. Most likely, a significant proportion of the primary production in the southeastern Chukchi Sea is used by benthos within the investigated Macoma community. Findings of three relatively large warm-water Pacific species near Point Hope in the Chukchi Sea are probably indicative of the progressive climate warming during the last century.  相似文献   

11.
Among the most numerous seabird and pinniped species of the Fram Strait and the Greenland Sea, little auks Alle alle and harp seals Pagophila (Phoca) groenlandica are very abundant in the mixed Polar/Arctic Waters at the front between the two water masses. This must reflect the presence of very high concentrations of their food, Arctic zooplankton and nekton, massively attracting their predators. Such a high biological production seems to be depending on new primary production based on upwelling and high nutrient concentration. This usually takes place at the ice edge (e.g. July 2005), but hydrological conditions such as eddies can modify its position, east of the front in open water as caused by a subsurface eddy (August 2005), or in ice-covered areas if westerly winds push the pack ice to the east, eventually covering an eddy and causing very high concentrations of little auks and harp seals (July 2008). On the other hand, a dramatic decrease of pack ice coverage can move this water mass farther north and west, making it inaccessible to little auks during their breeding season, and apparently causing breeding failure in Jan Mayen in July 2005. In future years, if a much stronger diminution in sea ice coverage will take place, similar to the retreat in 2005 and 2007, the failure might affect the whole Spitsbergen population, as well as other seabird species feeding mainly at the ice edge.  相似文献   

12.
Summary The zooplankton community in the vicinity of the ice edge in the west central Weddell Sea was investigated in the late austral summer (March 1986). Sampling was done with two ships operating concurrently, one in the pack ice and the other in the adjcent open sea. Metazoan microzooplankton (<1 mm) was most abundant in the epipelagic zone. It consisted mostly of copepod nauplii and copepods of the genera Oithona, Oncaea, Ctenocalanus and Microcalanus. While species composition was similar in both areas, vertical patterns differed in that the microzooplankton had sparse populations in the upper 50 m under the ice. This may have been related to water temperature which in the upper 50 m under the ice was more than 1°C cooler than in the open sea. Zooplankton in the 1–20 mm size range was dominated by the calanoid copepods Metridia gerlachei, Calanus propinquus and Calanoides acutus which constituted half the biomass in the upper 1000 m. Their populations had highest densities in the upper 150 m, though much of the C. acutus population resided below 300 m. Metridia gerlachei and C. propinquus underwent diel vertical migrations in both areas whereas C. acutus did not migrate. Species diversity in the epipelagic zone was moderate and the fauna was characterized by species typical of the oceanic east wind drift. Diversity increased with depth and was due primarily to the appearance of circumpolar mesopelagic copepods in Weddell Warm Deep Water. Biomass of 1–20 mm zooplankton in the 0–1000 m zone was low (1.1–1.3 gDWm-2) compared to other Southern Ocean areas investigated with comparable methods. It is suggested that this is related to Weddell circulation patterns and the resulting low annual primary production in the central Weddell Sea.  相似文献   

13.
Currently, the impact of declining seasonal sea ice extent in the Arctic on polar food webs remains uncertain. Previously, a range of proxy techniques has been employed to determine links between sea ice or phytoplankton primary production and the Arctic marine food web, although it is accepted that such approaches have their limitations. Here, we propose a novel approach to tracing sea ice primary production through Arctic food webs using the sea ice diatom biomarker, IP25. Various benthic macrofaunal specimens were collected between March and May 2008 from Franklin Bay in the Amundsen Gulf, Arctic Canada, as part of the International Polar Year–Circumpolar Flaw Lead system study. Each specimen was analysed for the presence of the sea ice diatom biomarker IP25 in order to provide evidence for feeding by benthic organisms on sea ice algae. IP25 was found in nineteen out of the twenty-one specimens analysed, often as the most abundant of the highly branched isoprenoid biomarkers detected. The stable isotope composition of IP2513C = −17.1 ± 0.5‰) in the sea urchin (Strongylocentrotus sp.) specimens was similar to that reported previously for this biomarker in Arctic sea ice, sedimenting particles and sediments. It is concluded that detection of IP25 in Arctic benthic macrofauna represents a novel approach to providing convincing evidence for feeding on sea ice algae. It is also proposed that analysis of IP25 may be used to trace trophic transfer of sea ice algal-derived organic matter through Arctic food webs in the future.  相似文献   

14.
In the Southern Ocean, zooplankton research has focused on krill and macro-zooplankton despite the high densities of micro- and meso-zooplankton. We investigated their community structure in relation to different sea ice conditions around Japan’s Syowa Station in Lützow-Holm Bay, in the summers of 2011 and 2012. Zooplankton samples were collected using vertical hauls (0–150 m), with a closing net of 100-μm mesh size. The results of cluster analysis showed that the communities in this region were separated into fast ice, pack ice, and open ocean fauna. The fast ice fauna had lower zooplankton abundance (393.8–958.9 inds. m?3) and was dominated by cyclopoid copepods of Oncaea spp. (54.9–74.8 %) and Oithona similis (6.6–19.9 %). Deep-water calanoid copepods were also found at the fast ice stations. Pack ice and open ocean fauna had higher zooplankton abundance (943.6–2,639.8 inds. m?3) and were characterized by a high density of foraminiferans in both years (6.6–61.9 %). Their test size distribution indicated that these organisms were possibly released from melting sea ice. The pteropod Limacina spp. was a major contributor to total abundance of zooplankton in the open ocean zone in 2012 (26.4 %). The physical and/or biological changes between 2 years may affect the abundance and distribution of the dominant zooplankton taxa such as cyclopoid copepods, foraminiferans, and pteropods. Information on the relationships between the different species associated with sea ice will help to infer the possible future impacts of climate change on the sea ice regions.  相似文献   

15.
Borealization is a type of community reorganization where Arctic specialists are replaced by species with more boreal distributions in response to climatic warming. The process of borealization is often exemplified by the northward range expansions and subsequent proliferation of boreal species on the Pacific and Atlantic inflow Arctic shelves (i.e., Bering/Chukchi and Barents seas, respectively). But the circumpolar nearshore distribution of Arctic-boreal fishes that predates recent warming suggests borealization is possible beyond inflow shelves. To examine this question, we revisited two nearshore lagoons in the eastern Alaska Beaufort Sea (Kaktovik and Jago lagoons, Arctic National Wildlife Refuge, Alaska, USA), a High Arctic interior shelf. We compared summer fish species assemblage, catch rate, and size distribution among three periods that spanned a 30-year record (baseline conditions, 1988–1991; moderate sea ice decline, 2003–2005; rapid sea ice decline, 2017–2019). Fish assemblages differed among periods in both lagoons, consistent with borealization. Among Arctic specialists, a clear decline in fourhorn sculpin (Myoxocephalus quadricornis, Kanayuq in Iñupiaq) occurred in both lagoons with 86%–90% lower catch rates compared with the baseline period. Among the Arctic-boreal species, a dramatic 18- to 19-fold increase in saffron cod (Eleginus gracilis, Uugaq) occurred in both lagoons. Fish size (length) distributions demonstrated increases in the proportion of larger fish for most species examined, consistent with increasing survival and addition of age-classes. These field data illustrate borealization of an Arctic nearshore fish community during a period of rapid warming. Our results agree with predictions that Arctic-boreal fishes (e.g., saffron cod) are well positioned to exploit the changing Arctic ecosystem. Another Arctic-boreal species, Dolly Varden (Salvelinus malma, Iqalukpik), appear to have already responded to warming by shifting from Arctic nearshore to shelf waters. More broadly, our findings suggest that areas of borealization could be widespread in the circumpolar nearshore.  相似文献   

16.
Sea‐ice coverage is a key abiotic driver of annual environmental conditions in Arctic marine ecosystems and could be a major factor affecting seabird trophic dynamics. Using stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in eggs of thick‐billed murres (Uria lomvia), northern fulmars (Fulmarus glacialis), glaucous gulls (Larus hyperboreus), and black‐legged kittiwakes (Rissa tridactyla), we investigated the trophic ecology of prebreeding seabirds nesting at Prince Leopold Island, Nunavut, and its relationship with sea‐ice conditions. The seabird community of Prince Leopold Island had a broader isotopic niche during lower sea‐ice conditions, thus having a more divergent diet, while the opposite was observed during years with more extensive sea‐ice conditions. Species' trophic position was influenced by sea ice; in years of lower sea‐ice concentration, gulls and kittiwakes foraged at higher trophic levels while the opposite was observed for murres and fulmars. For murres and fulmars over a longer time series, there was no evidence of the effect of sea‐ice concentration on species' isotopic niche. Results suggest a high degree of adaptation in populations of high Arctic species that cope with harsh and unpredictable conditions. Such different responses of the community isotopic niche also show that the effect of variable sea‐ice conditions, despite being subtle at the species level, might have larger implications when considering the trophic ecology of the larger seabird community. Species‐specific responses in foraging patterns, in particular trophic position in relation to sea ice, are critical to understanding effects of ecosystem change predicted for a changing climate.  相似文献   

17.
Bacterial carbon demand, an important component of ecosystem dynamics in polar waters and sea ice, is a function of both bacterial production (BP) and respiration (BR). BP has been found to be generally higher in sea ice than underlying waters, but rates of BR and bacterial growth efficiency (BGE) are poorly characterized in sea ice. Using melted ice core incubations, community respiration (CR), BP, and bacterial abundance (BA) were studied in sea ice and at the ice–water interface (IWI) in the Western Canadian Arctic during the spring and summer 2008. CR was converted to BR empirically. BP increased over the season and was on average 22 times higher in sea ice as compared with the IWI. Rates in ice samples were highly variable ranging from 0.2 to 18.3 μg C l−1 d−1. BR was also higher in ice and on average ~10 times higher than BP but was less variable ranging from 2.39 to 22.5 μg C l−1 d−1. Given the high variability in BP and the relatively more stable rates of BR, BP was the main driver of estimated BGE (r = 0.97, < 0.0001). We conclude that microbial respiration can consume a significant proportion of primary production in sea ice and may play an important role in biogenic CO2 fluxes between the sea ice and atmosphere.  相似文献   

18.
Fjords and open oceans are two typical marine ecosystems in the Arctic region, where glacial meltwater and sea ice meltwater have great effects on the bacterioplankton community structure during the summer season. This study aimed to determine the differences in bacterioplankton communities between these two ecosystems in the Arctic region. We conducted a detailed census of microbial communities in Kongsfjorden (Spitsbergen) and the Chukchi Borderland using high-throughput pyrosequencing of the 16S rRNA gene. Gammaproteobacteria and Bacteroidetes were the dominant members of the bacterioplankton community in Kongsfjorden. By contrast, the most abundant bacterial groups in the surface seawater samples from the Chukchi Borderland were Alphaproteobacteria and Actinobacteria. Differences in bacterial communities were found between the surface and subsurface waters in the investigation area of the Chukchi Borderland, and significant differences in bacterial community structure were also observed in the subsurface water between the shelf and deep basin areas. These results suggest the effect of hydrogeographic conditions on bacterial communities. Ubiquitous phylotypes found in all the investigated samples belonged to a few bacterial groups that dominate marine bacterioplankton communities. The sequence data suggested that changes in environmental conditions result in abundant rare phylotypes and reduced amounts of other phylotypes.  相似文献   

19.
A high abundance of resting cysts of the toxic dinoflagellate Alexandrium tamarense was recently reported in the vast continental shelf of the Chukchi Sea in the Arctic Ocean, suggesting that the species is widespread in the shelf. Nevertheless, little is known about the occurrence of A. tamarense vegetative cells in the water column of the arctic. Sea ice reduction and the inflow of Pacific summer water (PSW) through the Bering Strait have recently increased owing to warming in the shelf. To determine the spatial and temporal distributions of A. tamarense in the Chukchi Sea shelf and their relationship to the inflow of PSW, field samplings were conducted in the Chukchi Sea and north Bering Sea shelves three times during the summer of 2013 from July to October. Vegetative cells of A. tamarense was detected in both shelves at all sampling periods with a maximum density of 3.55 × 103 cells L−1. This species was also observed at the station at 73°N, indicating the northernmost record of this species to date. The center of the A. tamarense distribution was between the north Bering and south Chukchi Sea shelf during the first collection period, and spread to the north Chukchi Sea shelf during the second and third collection periods. The species occurrences were mainly observed at stations affected by the PSW, especially Bering shelf water. Water structure of PSW was characterized by warmer surface and bottom water temperatures, and increased temperatures may have promoted the cell growth and cyst germination of A. tamarense. Therefore, it is suggested that an increase in the PSW inflow owing to warming promotes toxic A. tamarense occurrences on the Chukchi Sea shelf.  相似文献   

20.
Zooplankton was surveyed in a tropical lagoon system of the northern coast of the Yucatan Peninsula in high tide, December (1998) and low tide, March 1999 (northerlies season). Zooplankton biomass was measured, zooplankters were counted, and copepods were identified and quantified. Despite the fact that both months were influenced by winds from the North, they showed a different salinity gradient which developed a particular structure of the zooplankton community. Biomass tended to be accumulated in certain areas apparently because of the high residence time of water in Chelem, the forcing effect of the northerlies, and of the tidal current. Biomass values suggest a relatively high secondary production when compared with other systems of the Yucatan Peninsula. The distribution of the copepods Acartia lilljeborgii and A. tonsa is related to saline conditions and tidal flow. The overall faunistic and hydrologic data suggest that even during a single climatic season, the zooplankton community shows strong changes due to mesoscale hydrological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号