首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The general structure of the P2X7 receptor (P2X7R) is similar to the structure of other P2X receptor family members, with the exception of its C terminus, which is the longest of this family. The P2X7R activates several intracellular signaling cascades, such as the calmodulin, mitogen-activated protein kinase and phospholipase D pathways. At low concentrations of ATP (micromolar range), P2X7R activation opens a cationic channel, similarly to other P2X receptors. However, in the presence of high concentrations of ATP (millimolar range), it opens a pathway that allows the passage of larger organic cations and anions. Here, we discuss both the structural characteristics of P2X7R related to its remarkable functions and the proposed mechanisms, including the dilation of the endogenous pore and the integration of another channel. In addition, we highlight the importance of P2X7R as a therapeutic target.  相似文献   

2.
The aim of this study was to characterize the regulatory mechanisms of the P2X(7) receptor (P2X(7)R)-mediated phospholipase D (PLD) activation in a rat brain-derived Type-2 astrocyte cell line, RBA-2. A time course study revealed that activation of P2X(7)R resulted in a choline and not phosphorylcholine formation, suggesting that activation of P2X(7)R is associated with the phosphatidylcholine-PLD (PC-PLD) in these cells. GF 109203X, a selective protein kinase C (PKC) inhibitor, partially inhibited the P2X(7)R-mediated PLD activation, while blocking the phorbol 12-myristate 13-acetate (PMA)-stimulated PLD activity. In addition, PMA synergistically activated the P2X(7)R-mediated PLD activity. Furthermore, genistein, a tyrosine kinase inhibitor, blocked the P2X(7)R-activated PLD, while KN62, a Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor, was less effective, whereas the mitogen-activated protein kinase (MAPK) inhibitor PD98059 was ineffective. No additive inhibitory effects were found by simultaneous treatment of GF 109203X and KN62 on P2X(7)R-activated PLD. Taken together, these results demonstrate that both PKC-dependent and PKC-independent signaling pathways are involved in the regulation of P2X(7)R-mediated PLD activation. Additionally, CaMKII may participate in the PKC-dependent pathway, and tyrosine kinase may play a pivotal role on both PKC-dependent and PKC-independent pathways in the P2X(7)R-mediated PLD activation in RBA-2 cells.  相似文献   

3.
ATP-mediated signaling has widespread actions in the nervous system from neurotransmission to regulation of proliferation. In addition, ATP is released during injury and associated to immune and inflammatory responses. Still, the potential of therapeutic intervention of purinergic signaling during pathological states is only now beginning to be explored because of the large number of purinergic receptors subtypes involved, the complex and often overlapping pharmacology and because ATP has effects on every major cell type present in the CNS. In this review, we will focus on a subclass of purinergic-ligand-gated ion channels, the P2X7 receptor, its pattern of expression and its function in the spinal cord where it is abundantly expressed. We will discuss the mechanisms for P2X7R actions and the potential that manipulating the P2X7R signaling pathway may have for therapeutic intervention in pathological events, specifically in the spinal cord.  相似文献   

4.
本研究通过高通量测序技术,分析正常培养和氧糖剥夺再复氧(oxygen and glucose deprivation/reoxygenation,OGD/R)培养星形胶质细胞来源外泌体的差异微小RNA(microRNA,miRNA)。采用超速离心法提取正常组和OGD/R组星形胶质细胞培养基上清的外泌体,透射电镜观察到提取的外泌体呈典型囊泡状,包膜完整,含有低电子密度的物质;纳米颗粒追踪技术(NTA)检测到星形胶质细胞外泌体大小为100.5±31.1 nm,占比为 96.8%;免疫印迹检测显示,提取物中有外泌体标志性蛋白肿瘤易感蛋白(tumour-susceptibility protein, TSG101)、热休克蛋白60 (heat shock proteins 60, Hsp60)、ALG-2相互作用蛋白X(ALG-2-interacting protein X, ALIX)的表达。与正常组相比,OGD/R组共有41个miRNA发生显著改变,其中20个miRNA显著升高,21个miRNA显著降低(P<0.05)。基因本体功能(GO)分析显示,差异靶基因主要参与蛋白质糖基化、脂质代谢过程、磷酸化作用、高尔基体、内质网、内吞体、细胞质囊泡和细胞突起等生物学过程;京都基因与基因组百科全书(KEGG)通路分析发现,差异靶基因主要与丁酸代谢、β-丙氨酸代谢、脂肪酸降解、线粒体自噬和P53信号通路等代谢途径和信号通路有关。通过对正常组和OGD/R组的星形胶质细胞来源的外泌体miRNA测序并进一步施行靶基因功能富集分析,为后续研究星形胶质细胞外泌体对氧糖剥夺再灌注神经元发挥的保护作用的具体机制提供了一定的研究基础。  相似文献   

5.
本实验将中国荷斯坦牛泌乳期高乳品质奶牛(H)和泌乳期低乳品质奶牛(L)乳腺组织作为实验对象,利用高通量测序技术进行了miRNA测序,与miRNA数据库比对,获得已知miRNA,整合miREvo和mirDeep2这两个miRNA预测软件,进行新miRNA分析,通过差异表达分析筛选组间差异miRNAs,获得56个差异表达miRNA(P <0.05,FDRq <0.05)并对差异表达miRNA进行靶基因预测;利用DAVID对靶基因进行GO(Gene Ontology)和信号通路富集分析。经过对靶基因筛选,发现了4个已报道与乳蛋白、乳脂紧密相关的功能基因:CSN3、SCD、LALBA和DGAT2。靶基因聚集的生物学功能多数参与了蛋白质和脂肪代谢,乳腺发育和分化,以及免疫功能。靶基因主要富集在MAPK 信号通路、甘油磷酸脂质代谢、缺氧诱导因子1和磷脂酰肌醇3激酶 蛋白激酶B信号转导通路。结果显示,靶基因主要富集在糖类代谢、脂肪代谢、蛋白质代谢、细胞凋亡以及免疫相关通路。  相似文献   

6.
随着对硫化氢(hydrogen sulfide,H2S)生理效应的研究,蛋白质硫巯基化(S-sulfhydration)修饰已进入人们的视野。已知依赖于H2S的蛋白质硫巯基化是继磷酸化(phosphorylation)、泛素化(ubiquitylation)、乙酰化(acetylation)和S-亚硝基化(S-nitrosylation)等之后的一种新的蛋白质翻译后修饰方式。对动物的研究表明,蛋白质硫巯基化修饰通过影响蛋白质活性和功能,从而在细胞内信号通路中发挥重要的调控作用。最近的研究结果提示,硫巯基化修饰还参与调节植物新陈代谢和形态建成。本文阐述了依赖于H2S的蛋白质硫巯基化的作用机制、检测方法和生理功能,并提出硫巯基化修饰也可能参与植物细胞信号转导的观点。  相似文献   

7.
Sphingolipids are a wide family of lipids that share common sphingoid backbones, including (2S,3R)-2-amino-4-octadecane-1,3-diol (dihydrosphingosine) and (2S,3R,4E)-2-amino-4-octadecene-1,3-diol (sphingosine). The metabolism and biological functions of sphingolipids derived from sphingosine have been the subject of many reviews. In contrast, dihydrosphingolipids have received poor attention, mainly due to their supposed lack of biological activity. However, the reported biological effects of active site directed dihydroceramide desaturase inhibitors and the involvement of dihydrosphingolipids in the response of cells to known therapeutic agents support that dihydrosphingolipids are not inert but are in fact biologically active and underscore the importance of elucidating further the metabolic pathways and cell signaling networks involved in the biological activities of dihydrosphingolipids. Dihydroceramide desaturase is the enzyme involved in the conversion of dihydroceramide into ceramide and it is crucial in the regulation of the balance between sphingolipids and dihydrosphingolipids. Furthermore, given the enzyme requirement for O? and the NAD(P)H cofactor, the cellular redox balance and dihydroceramide desaturase activity may reciprocally influence each other. In this review both dihydroceramide desaturase and the biological functions of dihydrosphingolipids are addressed and perspectives on this field are discussed.  相似文献   

8.
The P2X7 receptor (P2X7R) is an ATP-gated ion channel highly expressed in microglia. P2X7R plays important roles in inflammatory responses in the brain. However, little is known about the mechanisms regulating its functions in microglia. Lysophosphatidylcholine (LPC), an inflammatory phospholipid that promotes microglial activation, may have some relevance to P2X7R signaling in terms of microglial function. In this study, we examined its effects on P2X7R signaling in a mouse microglial cell line (MG6) and primary microglia. LPC facilitated the sustained increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) through P2X7R channels activated by ATP or BzATP. The potentiated increase in [Ca(2+)](i) was actually inhibited by P2X7R antagonists, brilliant blue G and oxidized ATP. The potentiating effect of LPC was not observed with P2Y receptor systems, which are also expressed in MG6 cells. G2A, a receptor for LPC, was expressed in MG6 cells, but not involved in the facilitating effect of LPC on the P2X7R-mediated change in [Ca(2+)](i). Furthermore, LPC enhanced the P2X7R-associated formation of membrane pores and the activation of p44/42 mitogen-activated protein kinase. These results suggest that LPC may regulate microglial functions in the brain by enhancing the sensitivity of P2X7R.  相似文献   

9.
10.
余淑娟  耿晶  陈兰芬 《遗传》2017,39(7):650-658
Hippo信号通路最初是在果蝇(Drosophila)中被发现的,是在进化上高度保守并能调控器官大小的信号转导通路。在哺乳动物多种组织器官中,Hippo信号通路的关键激酶MST1和MST2(果蝇Hippo激酶的同源分子)通过抑制下游的转录共激活分子YAP(果蝇中为Yorki)的活性来实现对细胞增殖和凋亡的调控。在这些组织器官中条件性敲除Mst1Mst2或过表达Yap大都会造成细胞过度增殖或肿瘤的发生。近年来,随着研究的不断深入,Hippo信号通路不依赖于YAP的非经典功能也逐渐被发现。其中,Hippo信号通路多个成员在免疫系统中的调控功能逐渐成为该领域的研究热点,特别是在免疫细胞发育分化、机体自身免疫性疾病及应对病毒和细菌入侵等过程中所发挥的调控作用。本文重点阐述了Hippo信号通路在T淋巴细胞中发育、分化、活化和迁移等方面及在部分天然免疫细胞抗感染过程中的功能和调控。  相似文献   

11.
冷诱导RNA结合蛋白( cold-inducible RNA-binding protein, CIRBP)是哺乳动物体内发现的第一个冷诱导蛋白。这种蛋白质在机体内各个组织与器官中均广泛表达,并在正常生理状态或应激条件下,广泛参与多个生物学过程,例如细胞增殖、发展、凋亡、分化和生物节律调节等多个方面。随着研究的深入,发现CIRBP具有一些新的功能,例如在一些炎症的发生和肿瘤的发生过程中,起到促进作用与作为新一代的原癌基因等。CIRBP发挥作用的信号通路,主要有胞外信号调节激酶/丝裂原活化蛋白激酶(extracellular signal-regulated kinases/mitogen-activated protein kinases, ERK/MAPK)、磷脂酰肌醇3激酶/蛋白激酶B(phosphatidylinositol 3-kinase/protein kinase B, PI3K/PKB)、无翅和整合基因(wingless and integration 1,Wnt)、核因子κB(nuclear factor κB, NF-κB)等。本文针对CIRBP的生物学功能和相关信号通路的最新研究进展加以综述,希望能为细胞生物学基础研究与利用该蛋白质进行临床有关疾病的诊治提供新的思路。  相似文献   

12.
Purinergic P2X7 receptor (P2X7R), an ATP-gated cation channel, is unique among all other family members because of its ability to respond to various stimuli and to modulate pro-inflammatory signaling. The activation of P2X7R in immune cells is absolutely required for mature interleukin -1beta (IL-1beta) and IL-18 production and release. Lung alveoli are lined by the structural alveolar epithelial type I (AEC I) and alveolar epithelial type II cells (AEC II). AEC I plays important roles in alveolar barrier protection and fluid homeostasis whereas AEC II synthesizes and secrete surfactant and prevents alveoli from collapse. Earlier studies indicated that purinergic P2X7 receptors were specifically expressed in AEC I. However, their implication in alveolar functions has not been explored. This paper reviews two important signaling pathways of P2X7 receptors in surfactant homeostatsis and Acute Lung Injury (ALI). Thus, P2X7R resides at the critical nexus of alveolar pathophysiology.  相似文献   

13.
The death domain (DD), which is a versatle protein interaction module, is the prime mediator of the interactions necessary for apoptosis, innate immunity and the necrosis signaling pathway. Because DD mediated signaling events are associated with critical human diseases, studies in these areas are of great biological importance. Accordingly, many biochemical and structural studies of DD have been conducted in the past decade to investigate apoptotic and innate immune signaling. Evaluation of the molecular structure of DD and their interactions with partners have shown the underlying molecular basis for the assembly of DD mediated complexes and for the regulation of apoptosis and innate immunity. This review summarizes the structure and function of various DDs and DD:DD complexes involved in those signaling pathways.  相似文献   

14.
Thirty years ago, it was discovered that 14-3-3 proteins could activate enzymes involved in amino acid metabolism. In the following decades, 14-3-3s have been shown to be involved in many different signaling pathways that modulate cellular and whole body energy and nutrient homeostasis. Large scale screening for cellular binding partners of 14-3-3 has identified numerous proteins that participate in regulation of metabolic pathways, although only a minority of these targets have yet been subject to detailed studies. Because of the wide distribution of potential 14-3-3 targets and the resurging interest in metabolic pathway control in diseases like cancer, diabetes, obesity and cardiovascular disease, we review the role of 14-3-3 proteins in the regulation of core and specialized cellular metabolic functions. We cite illustrative examples of 14-3-3 action through their direct modulation of individual enzymes and through regulation of master switches in cellular pathways, such as insulin signaling, mTOR- and AMP dependent kinase signaling pathways, as well as regulation of autophagy. We further illustrate the quantitative impact of 14-3-3 association on signal response at the target protein level and we discuss implications of recent findings showing 14-3-3 protein membrane binding of target proteins.  相似文献   

15.
16.
恶性肿瘤已成为危害人类健康的重要杀手,针对肿瘤的研究也成为当今医学界的热点.含有MARVEL跨膜结构域的趋化素样因子基因家族(CKLF-like MARVEL transmembrane domain containing family of genes,CMTM family),原名人类趋化素样因子超家族(chemo...  相似文献   

17.
Acute viral infection causes damages to the host due to uncontrolled viral replication but even replication deficient viral vectors can induce systemic inflammatory responses. Indeed, overactive host innate immune responses to viral vectors have led to devastating consequences. Macrophages are important innate immune cells that recognize viruses and induce inflammatory responses at the early stage of infection. However, tissue resident macrophages are not easily activated by the mere presence of virus suggesting that their activation requires additional signals from other cells in the tissue in order to trigger inflammatory responses. Previously, we have shown that the cross-talk between epithelial cells and macrophages generates synergistic inflammatory responses during adenoviral vector infection. Here, we investigated whether ATP is involved in the activation of macrophages to induce inflammatory responses during an acute adenoviral infection. Using a macrophage-epithelial cell co-culture system we demonstrated that ATP signaling through P2X(7) receptor (P2X(7)R) is required for induction of inflammatory mediators. We also showed that ATP-P2X(7)R signaling regulates inflammasome activation as inhibition or deficiency of P2X(7)R as well as caspase-1 significantly reduced IL-1β secretion. Furthermore, we found that intranasal administration of replication deficient adenoviral vectors in mice caused a high mortality in wild-type mice with symptoms of acute respiratory distress syndrome but the mice deficient in P2X(7)R or caspase-1 showed increased survival. In addition, wild-type mice treated with apyrase or inhibitors of P2X(7)R or caspase-1 showed higher rates of survival. The improved survival in the P2X(7)R deficient mice correlated with diminished levels of IL-1β and IL-6 and reduced neutrophil infiltration in the early phase of infection. These results indicate that ATP, released during viral infection, is an important inflammatory regulator that activates the inflammasome pathway and regulates inflammatory responses.  相似文献   

18.
Locovei S  Scemes E  Qiu F  Spray DC  Dahl G 《FEBS letters》2007,581(3):483-488
The purinergic receptor P2X(7) is part of a complex signaling mechanism participating in a variety of physiological and pathological processes. Depending on the activation scheme, P2X(7) receptors in vivo are non-selective cation channels or form large pores that can mediate apoptotic cell death. Expression of P2X(7)R in Xenopus oocytes results exclusively in formation of a non-selective cation channel. However, here we show that co-expression of P2X(7)R with pannexin1 in oocytes leads to the complex response seen in many mammalian cells, including cell death with prolonged ATP application. While the cation channel activity is resistant to carbenoxolone treatment, this gap junction and hemichannel blocking drug suppressed the currents induced by ATP in pannexin1/P2X(7)R co-expressing cells. Thus, pannexin1 appears to be the molecular substrate for the permeabilization pore (or death receptor channel) recruited into the P2X(7)R signaling complex.  相似文献   

19.
20.
Thymocytes were reported to undergo apoptosis in the presence of extracellular ATP through the activation of the purinergic receptors P2 X 1R, P2 X 7R or both. We investigated the identity of the P2 X R and the signaling pathways involved in ATP-mediated apoptosis. Apoptosis elicited by ATP was prevented by inhibition of P2 X 7R, or in thymocytes bearing a mutated P2 X 7R, and reproduced with a P2 X 7R agonist, but not with a P2 X 1R agonist. Stimulation of thymocytes with either ATP or a P2 X 7R agonist was found to stimulate a late de novo ceramide synthesis and mitochondrial alterations. Inhibition of either processes attenuated apoptosis. Interestingly, stimulation with either ATP or a P2 X 1R agonist induced an early ceramide accumulation and a weak caspases-3/7 activation that did not lead to apoptosis. In conclusion, de novo ceramide generation and mitochondrial alterations, both resulting from P2 X 7R activation, were implicated in ATP-induced thymocyte apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号