首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We report the use of small circular DNA as a triplex-directing template for the highly efficient chemical ligation of oligodeoxyribonucleotides (ODNs) using cyanogen bromide (BrCN). These investigations compared the use of a linear homopyrimidine DNA template (17mer) and a circular pyrimidine-rich DNA template (44mer) for directing the chemical ligation of two homopurine ODNs (6mer + 11mer). The effects of substrate/template ratio, buffer, salt, ionic strength, pH and temperature have been examined in the BrCN activated ligation reactions. The optimal yield of 51% for ligation on the linear template was at pH 6.0, 200 mM MgCl2, 4 degreesC. In contrast, near quantitative ligation on the circular template occurred at higher pH, higher temperature, and showed less dependence on Mg2+concentration (97% yield, pH 7.5, 200 mM MgCl2, 25 degreesC). The relative observed rate of the ligation reaction was a minimum of 35 times faster on the circular DNA template relative to the linear template at pH 7.5, 200 mM MgCl2, 4 degreesC. These investigations reveal that chemical ligation of short ODNs on circularized DNA templates through triplex formation is a highly efficient process over a broad range of conditions.  相似文献   

2.
We synthesized two oligodeoxyribonucleotides bearing an isopropyl phosphotriester at defined positions using new phosphorobisamidite chemistry. Diastereomers were separated with HPLC and their template properties were analyzed. Priming oligodeoxyribonucleotides labeled with 32P at the 5'-end were annealed to the modified oligodeoxyribonucleotides and elongated with DNA polymerase I large fragment from Escherichia coli. Results show that the phosphotriester inhibits the DNA chain elongation partially and the extents of the inhibition are remarkably different between the two diastereomers.  相似文献   

3.
We have synthesized four oligodeoxyribonucleotides each bearing an isopropyl phosphotriester at a defined position. These oligomers were used as templates for in vitro DNA synthesis catalyzed by Escherichia coli DNA polymerase I large fragment. Results showed that the phosphotriester inhibits the DNA chain elongation and the level of the inhibition is dependent on the base 5' to the phosphotriester.  相似文献   

4.
Tri-, tetra-, penta- and hexanucleotides bearing a reactive 4-(N-methylamino-N-2-chloroethyl)benzylamide group can effectively and selectively modify a single-stranded DNA fragment (302 nucleotides) in the presence of effectors, N-(2-hydroxyethyl)phenazinium derivatives of oligonucleotides complementary to DNA sequences adjacent to the binding site of the reagent. The reagents investigated modify not only single-stranded but also secondary-structured DNA regions. The modification extent depends on the length of oligonucleotide parts of the reagent and effector. A gap between the two stretches associated with the target DNA prevents the effector from functioning. The substitution of an octanucleotide effector by two tetranucleotide ones only slightly reduces the modification extent with a hexanucleotide reagent. A very efficient and specific modification can be achieved by using two effectors flanking the reactive oligonucleotide derivative. The approach leads to the modification extent of up to 89% with a hexanucleotide reagent.  相似文献   

5.
6.
DNA covalently bound to an uncharged nylon membrane was used for consecutive amplifications of several different genes by PCR. Successful PCR amplifications were obtained for membrane-bound genomic and plasmid DNA. Membrane-bound genomic DNA templates were re-used at least 15 times for PCR with specific amplification of the desired gene each time. PCR amplifications of specific sequences of p53, p16, CYP1A1, CYP2D6, GSTM1 and GSTM3 were performed independently on the same strips of uncharged nylon membrane containing genomic DNA. PCR products were subjected to restriction fragment length polymorphism analysis, single-strand conformational polymorphism analysis and/or dideoxy sequencing to confirm PCR-amplified gene sequences. We found that PCR fragments obtained by amplification from bound genomic DNA as template were identical in sequence to those of PCR products obtained from free genomic DNA in solution. PCR was performed using as little as 5 ng genomic or 4 fg plasmid DNA bound to membrane. These results suggest that DNA covalently bound to membrane can be re-used for sample-specific PCR amplifications, providing a potentially unlimited source of DNA for PCR.  相似文献   

7.
We report a concise and efficient method to make a circular single-stranded DNA containing a defined DNA lesion. In this protocol, phagemid DNA containing Uracil is used as a template to synthesize a complementary DNA strand using T7 DNA polymerase and an oligonucleotide primer including a site-specific DNA lesion. The ligated lesion-containing strand can be recovered after the phage-derived template DNA is degraded by treatment with E. coli Uracil DNA glycosylase and Exonucleases I and III. The resulting product is a circular single-stranded DNA containing a defined DNA lesion suitable for in vitro translesion replication assays.  相似文献   

8.
Campbell MA  Miller PS 《Biochemistry》2008,47(48):12931-12938
The cancer chemotherapeutic agent cis-diamminedichloroplatinum(II) or cisplatin reacts primarily with guanines in DNA to form 1,2-Pt-GG and 1,3-Pt-GNG intrastrand cross-links and, to a lesser extent, G-G interstrand cross-links. Recent NMR evidence has suggested that cisplatin can also form a coordination complex with the phosphodiester internucleotide linkage of DNA. We have examined the effects of the phosphodiester backbone on the reactions of cisplatin with oligodeoxyribonucleotides that lack or contain a GTG sequence. Cisplatin forms a stable adduct with TpT that can be isolated by reversed phase HPLC. The cis-Pt-TpT adduct contains a single Pt, as determined by atomic absorption spectroscopy (AAS) and by electrospray ionization mass spectrometry (ESI-MS), and is resistant to digestion by snake venom phosphodiesterase. Treatment of the adduct with sodium cyanide regenerates TpT. Similar adduct formation was observed when T(pT)(8) was treated with cisplatin, but not when the phosphodiester linkages of T(pT)(8) were replaced with methylphosphonate groups. These results suggest that the platinum may be coordinated with the oxygens of the thymine and possibly with those of the phosphodiester group. As expected, reaction of a 9-mer containing a GTG sequence with cisplatin yielded an adduct that contained a 1,3-Pt-GTG intrastrand cross-link. However, we found that the number and placement of phosphodiesters surrounding a GTG sequence significantly affected intrastrand cross-link formation. Increasing the number of negatively charged phosphodiesters in the oligonucleotide increased the amount of GTG platination. Surrounding the GTG sequence with nonionic methylphosphonate linkages inhibited or eliminated cross-link formation. These observations suggest that interactions between cisplatin and the negatively charged phosphodiester backbone may play an important role in facilitating platination of guanine nucleotides in DNA.  相似文献   

9.
Using the rapid-mixing/photocross-linking technique developed in our laboratory, we have investigated the kinetics of interaction between Escherichia coli RNA polymerase and pAR1319, a recombinant plasmid DNA containing the bacteriophage T7 A2 early promoter. By monitoring the time-dependent density of bound RNA polymerase along the relaxed circular DNA molecule using this technique, we have been able to demonstrate kinetic evidence for linear diffusion of RNA polymerase along DNA in a different system from that previously described (Park, C. S., Hillel, Z., and Wu, C.-W. (1982) J. Biol. Chem. 251, 6950-6956). The nonspecific association rate constant kon was measured to be 7.7 x 10(4) M-1 s-1 at a DNA chain concentration of 22.4 nM. By taking advantage of the fact that rapid mixing displaces bound protein molecules from DNA, but leaves them within the domain of the DNA, the rate of intradomain binding of RNA polymerase to pAR1319 DNA was determined to be 8.2 s-1. Since the plasmid is described by a radius of gyration of 0.22 microns, the intradomain concentration of base pairs could be calculated. Using this concentration (180 microM), the rate constant for intradomain nonspecific association of RNA polymerase to pAR1319 DNA was estimated to be 4.6 x 10(4) M-1 s-1. In addition, a mathematical model has been used to fit the other two important rate constants to the experimental data: koff, which describes the dissociation of RNA polymerase from nonspecific binding sites, and D1, the one-dimensional diffusion coefficient of the enzyme along the DNA molecule. In this model, the circular DNA molecule is described as a ring of interconnected binding sites which together comprise a DNA "domain." RNA polymerase, which enters the domain via three-dimensional diffusion and binds to each site, is allowed to diffuse linearly between adjacent sites and three-dimensionally on and off the DNA molecule. The rate equations for the time-dependent occupancy of each site by RNA polymerase could be written, based on general principles. By solving the resulting family of differential equations, koff and D1 were determined to be 0.3 s-1 and 1.5 x 10(-9) cm2 s-1, respectively.  相似文献   

10.
The yeast Saccharomyces cerevisiae was transformed with restriction endonuclease-digested (linear) DNAs containing the replication origin of the yeast 2 microns plasmid and selectable markers with efficiencies of 10(3) to 10(4), 10(3), and 10(2) to 10(3) transformants per microgram of DNA in the cases of transformations with linear DNAs containing the same cohesive ends, flush ends, and non-complementary cohesive ends, respectively. The results of a restriction analysis of the circular plasmids recovered from transformed cells suggested that the linear DNA molecules were ligated to produce circular forms in the recipient protoplasts.  相似文献   

11.
12.
13.
Real-time turbidimetry of LAMP reaction for quantifying template DNA   总被引:29,自引:0,他引:29  
Loop-mediated isothermal amplification (LAMP) is a nucleic acid amplification method that allows the synthesis of large amounts of DNA in a short period of time with high specificity. As the LAMP reaction progresses, the reaction by-product pyrophosphate ions bind to magnesium ions and form a white precipitate of magnesium pyrophosphate. We designed an apparatus capable of measuring the turbidity of multiple samples simultaneously while maintaining constant temperature to conduct real-time measurements of the changes in the turbidity of LAMP reactions. The time (Tt) required for the turbidity of the LAMP reaction solution to exceed a given value was dependent on the quantity of the initial template DNA. That is, a graph with the plot of Tt versus the log of the amount of initial template DNA was linear from 2 x 10(3) copies (0.01 pg/tube) to 2 x 10(9) copies (100 ng/tube) of template DNA. These results indicate that real-time turbidity measurements of the LAMP reaction permit the quantitative analysis of minute amounts of nucleic acids present in a sample, with a high precision over a wide range, using a simple apparatus reported in this study.  相似文献   

14.
The enzymatic ligation of 5-10-membered synthetic oligodeoxyribonucleotides forming the complementary DNA-like duplexes has been studied. The possibility of selective DNA ligase catalyzed ligation of 5'-adenylylated derivatives of oligonucleotides in the absence of rATP and also the selective joining of cohesive ends in the presence of blunt ends in the complex mixtures of oligonucleotides at definite concentrations of rATP have been demonstrated. The influence of length and sequence of short synthetic DNA-duplexes on the efficiency of ligation has been shown. We have identified the unusual octanucleotide dpTATAATAT, that being able to form concatemer complexes could not be polymerized by T4 DNA ligase.  相似文献   

15.
R S Brody 《Biochemistry》1991,30(29):7072-7080
The processive hydrolysis of single-stranded oligodeoxyribonucleotides by exonuclease I from Escherichia coli has been investigated. Oligodeoxyribonucleotides and their analogues, which contain either an abasic site or a methylphosphonate internucleotide linkage, were partially hydrolyzed by exonuclease I. The relative dissociation constant for the enzyme and each oligomeric product was calculated from the concentration of that oligomer found in solution and hence released by the enzyme before complete hydrolysis. The results have led to a characterization of the two oligodeoxyribonucleotide domains that bind to exonuclease I. The first domain, which begins at the reactive 3'-terminal phosphodiester and extends to the 7th nucleoside base, requires both phosphodiester monoanions and base residues for its interaction with the enzyme. The second domain includes phosphodiester monoanions in positions 9-13 from the 3'-terminus but does not require nucleoside bases. Methylphosphonate substitutions indicate that only two or three of these phosphodiesters, in variable positions, must remain anionic in order to obtain full enzyme binding. The residues between the two binding domains do not play a significant role in the enzyme-oligomer interaction.  相似文献   

16.
A method is described for the rapid analysis of DNA ligation products in the assembly of synthetic genes and gene fragments. The method is based on the simultaneous analysis of multiple ligation reactions where a single but different DNA oligomer is radiolabelled per ligation reaction. After each ligation the reaction mixture is electrophoresed on a denaturing, as well as a non-denaturing, polyacrylamide gel allowing one to monitor the ligation reaction products. In addition, a unique method for generating single stranded DNA sizing standards up to approximately 300 nucleotides in length is described.  相似文献   

17.
Mitochondrial DNA replication is performed by a simple machinery, containing the TWINKLE DNA helicase, a single-stranded DNA-binding protein, and the mitochondrial DNA polymerase γ. In addition, mitochondrial RNA polymerase is required for primer formation at the origins of DNA replication. TWINKLE adopts a hexameric ring-shaped structure that must load on the closed circular mtDNA genome. In other systems, a specialized helicase loader often facilitates helicase loading. We here demonstrate that TWINKLE can function without a specialized loader. We also show that the mitochondrial replication machinery can assemble on a closed circular DNA template and efficiently elongate a DNA primer in a manner that closely resembles initiation of mtDNA synthesis in vivo.  相似文献   

18.
Photoaddition between adjacent adenine and thymine bases occurs, with a quantum yield of approximately 5 X 10(-4) mol einstein-1, when d(T-A), dT-A, d(pT-A), d(T-A-T), d(T-A-T-A) and poly(dA-dT) are irradiated, at 254 nm, in aqueous solution. The photoadduct thus formed is specifically degraded by acid to the fluorescent heterocyclic base 6-methylimidazo[4,5-b]pyridin-5-one (6-MIP) with retention of C(8) of adenine and the methyl group of thymine. This reaction, coupled with either spectrofluorimetric or radiochemical assay of 6-MIP isolated by high voltage paper electrophoresis, has been used to demonstrate formation of the adenine-thymine photoadduct on UV irradiation of poly(dA-dT).poly(dA-dT) and both native and denatured DNA from calf thymus and E. coli. Estimated quantum yields for this new type of photoreaction in DNA show that it is substantially quenched by base pairing. Possible biological implications of the photoreaction are discussed.  相似文献   

19.
We describe the reaction of oligonucleotides containing an aldehydic group at the 5'-end or inside the sequence with an oxyamino label. The reaction was found to be highly selective and represents an efficient method for derivatization of oligonucleotides.  相似文献   

20.
Nucleoside phosphoramidite derivatives containing two protected primary hydroxyl functions have been incorporated into synthetic oligonucleotides as 'branching monomers'. With selective deprotection, multiple identical copies of an additional oligonucleotide can be incorporated to form fork- or comb-like structures for use as signal amplification materials in nucleic acid hybridization assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号