首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Borrelia hermsii, a relapsing fever agent, undergoes multiphasic antigenic variation to evade its host's immune response. Serotype specificity is determined by variable membrane lipoproteins, Vmps, which are expressed from genes located near the end of a linear plasmid. Using the polymerase chain reaction and primers representing the promoter of the active vmp and a conserved telomeric sequence, we characterized the subtelomeric expression regions of the 25 known serotypes of strain HS1. The distance from the promoter to the telomere fell into three size classes of approximately 1.0, 1.5, and 2.5 kilobases. In the sequenced serotypes the size differences were accounted for by variable lengths of the vmp genes and intervening sequences between 3' end of the vmp gene and the start of a downstream homology block. The degree of nucleotide identity between different vmp genes, or between the different 3' flanking DNA varied from 39-78%. Thus, there is length and sequence variability not only between vmp genes themselves but also between the 3' flanking regions of vmp genes.  相似文献   

2.
A O Wilkie  D R Higgs 《Genomics》1992,13(1):81-88
Previous work has demonstrated discontinuous length variation at the tip of the short arm of human chromosome 16 (16pter) due to polymorphism of the subtelomeric region. We have now analyzed the zone where the two most common subtelomeric alleles (A and B) diverge. This lies 145 kb distal to the alpha-globin genes and comprises a complex segment of approximately 4 kb where there is partial loss of homology between the alleles, preceding the final point of divergence. Most notably, there is an imperfect (CA)n repeat that differs in length with different 16pter alleles and is exceptionally large (n = 250-350) in the case of the A allele and homologous sequences on Xqter and Yqter. Both the (CA)n expansion and the genetic exchange between chromosomes 16, X, and Y seem to have occurred since the divergence of man from other great apes. The occurrence of long (CA)n tracts may be related to the biology of subtelomeric regions.  相似文献   

3.

Background

Chromosome ends are composed of telomeric repeats and subtelomeric regions, which are patchworks of genes interspersed with repeated elements. Although chromosome ends display similar arrangements in different species, their sequences are highly divergent. In addition, these regions display a particular nucleosomal composition and bind specific factors, therefore producing a special kind of heterochromatin. Using data from currently available draft genomes we have characterized these putative Telomeric Associated Sequences in Toxoplasma gondii.

Results

An all-vs-all pairwise comparison of T. gondii assembled chromosomes revealed the presence of conserved regions of ∼ 30 Kb located near the ends of 9 of the 14 chromosomes of the genome of the ME49 strain. Sequence similarity among these regions is ∼ 70%, and they are also highly conserved in the GT1 and VEG strains. However, they are unique to Toxoplasma with no detectable similarity in other Apicomplexan parasites. The internal structure of these sequences consists of 3 repetitive regions separated by high-complexity sequences without annotated genes, except for a gene from the Toxoplasma Specific Family. ChIP-qPCR experiments showed that nucleosomes associated to these sequences are enriched in histone H4 monomethylated at K20 (H4K20me1), and the histone variant H2A.X, suggesting that they are silenced sequences (heterochromatin). A detailed characterization of the base composition of these sequences, led us to identify a strong long-range compositional bias, which was similar to that observed in other genomic silenced fragments such as those containing centromeric sequences, and was negatively correlated to gene density.

Conclusions

We identified and characterized a region present in most Toxoplasma assembled chromosomes. Based on their location, sequence features, and nucleosomal markers we propose that these might be part of subtelomeric regions of T. gondii. The identified regions display a unique trinucleotide compositional bias, which is shared (despite the lack of any detectable sequence similarity) with other silenced sequences, such as those making up the chromosome centromeres. We also identified other genomic regions with this compositional bias (but no detectable sequence similarity) that might be functionally similar.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-21) contains supplementary material, which is available to authorized users.  相似文献   

4.
Genetic diversity in yeast assessed with whole-genome oligonucleotide arrays   总被引:15,自引:0,他引:15  
The availability of a complete genome sequence allows the detailed study of intraspecies variability. Here we use high-density oligonucleotide arrays to discover 11,115 single-feature polymorphisms (SFPs) existing in one or more of 14 different yeast strains. We use these SFPs to define regions of genetic identity between common laboratory strains of yeast. We assess the genome-wide distribution of genetic variation on the basis of this yeast population. We find that genome variability is biased toward the ends of chromosomes and is more likely to be found in genes with roles in fermentation or in transport. This subtelomeric bias may arise through recombination between nonhomologous sequences because full-gene deletions are more common in these regions than in more central regions of the chromosome.  相似文献   

5.
The subtelomeric regions of human chromosomes are comprised of sequence homologies shared between distinct subsets of chromosomes. In the course of developing a set of unique human telomere clones, we identified many clones containing such shared homologies, characterized by the presence of cross-hybridization signals on one or more telomeres in a fluorescence in situ hybridization (FISH) assay. We studied the evolutionary origin of seven subtelomeric clones by performing comparative FISH analysis on a primate panel that included great apes and Old World monkeys. All clones tested showed a single hybridization site in Old World monkeys that corresponded to one of the orthologous human sites, thus indicating the ancestral origin. The timing of the duplication events varied among the subtelomeric regions, from approximately 5 to approximately 25 million years ago. To examine the origin of and mechanism for one of these subtelomeric duplications, we compared the sequence derived from human 2q13--an ancestral fusion site of two great ape telomeric regions--with its paralogous subtelomeric sequences at 9p and 22q. These paralogous regions share large continuous homologies and contain three genes: RABL2B, forkhead box D4, and COBW-like. Our results provide further evidence for subtelomeric-mediated genomic duplication and demonstrate that these segmental duplications are most likely the result of ancestral unbalanced translocations that have been fixed in the genome during recent primate evolution.  相似文献   

6.
Telomeres are DNA-protein complexes that protect linear chromosomes from degradation and fusions. Telomeric DNA is repetitive and G-rich, and protrudes towards the end of the chromosomes as 3'G-overhangs. In Leishmania spp., sequences adjacent to telomeres comprise the Leishmania conserved telomere associated sequences (LCTAS) that are around 100 bp long and contain two conserved sequence elements (CSB1 and CSB2), in addition to non-conserved sequences. The aim of this work was to study the genomic organization of Leishmania (Leishmania) amazonensis telomeric/subtelomeric sequences. Leishmania amazonensis chromosomes were separated in a single Pulsed Field Gel Electrophoresis (PFGE) gel as 25 ethidium bromide-stained bands. All of the bands hybridized with the telomeric probe (5'-TTAGGG-3')3 and with probes generated from the conserved subtelomeric elements (CSB1, CSB2). Terminal restriction fragments (TRF) of L. amazonensis chromosomes were analyzed by hybridizing restriction digested genomic DNA and chromosomal DNA separated in 2D-PFGE with the telomeric probe. The L. amazonensis TRF was estimated to be approximately 3.3 kb long and the telomeres were polymorphic and ranged in size from 0.2 to 1.0 kb. Afa I restriction sites within the conserved CSB1 elements released the telomeres from the rest of the chromosome. Bal 31-sensitive analysis confirmed the presence of terminal Afa I restriction sites and served to differentiate telomeric fragments from interstitial internal sequences. The size of the L. amazonensis 3' G-overhang was estimated by non-denaturing Southern blotting to be approximately 12 nt long. Using similar approaches, the subtelomeric domains CSB1 and CSB2 were found to be present in a low copy number compared to telomeres and were organized in blocks of 0.3-1.5 kb flanked by Hinf I and Hae III restriction sites. A model for the organization of L. amazonensis chromosomal ends is provided.  相似文献   

7.
The discoidin I genes of Dictyostelium form a small, co-ordinately regulated multigene family. We have sequenced and compared the upstream regions of the DiscI-alpha, -beta and -gamma genes. For the most part the upstream regions of the three genes are non-homologous. The upstream sequences of the beta and gamma genes are exceedingly A + T-rich, while those of the alpha gene are less so. All three genes have a relatively G + C-rich region 20 to 40 base-pairs in length, found approximately 200 base-pairs 5' to the messenger RNA start site. This G + C-rich region 5' to the beta and gamma genes is flanked by short inverted repeats. Within this region, there is an 11 base-pair exact homology between the alpha and gamma genes, and a less perfect homology between these genes and the beta gene. The homology is flanked at a short distance by interspersed G and T residues. The gamma gene is greater than 90% A + T for greater than 800 base-pairs upstream. Further upstream there is a G + C-rich region that is also found inverted approximately 3.5 X 10(3) base-pairs away. The gamma and beta genes are tandemly linked, and the entire approximately 500 base-pair intergene region between the 3' end of the gamma gene and the 5' end of the beta gene is A + T-rich (approximately 90%) with the exception of the homology region 5' to the gamma gene. We demonstrate also the presence of a discoidin I pseudogene fragment having only 139 base-pairs of discoidin homology with greater than 8% mismatch. It is flanked upstream by five 39 base-pair G + C-rich repeats, and downstream by sequences that are extremely A + T-rich. We discuss the possible significance of the conserved G + C-rich structures on discoidin I gene expression.  相似文献   

8.
Macronuclear gene-sized molecules of hypotrichs.   总被引:7,自引:1,他引:6       下载免费PDF全文
The macronuclear genome of hypotrichous ciliates consists of DNA molecules of gene-sized length. A macronuclear DNA molecule contains a single coding region. We have analyzed the many hypotrich macronuclear DNA sequences sequenced by us and others. No highly conserved promoter sequences nor replication initiation sequences have been identified in the 5' nor in the 3' non-translated regions, suggesting that promoter function in hypotrichs may differ from other eukaryotes. The macronuclear genes are intron-poor; approximately 19% of the genes sequenced to date have one to three introns. Not all macronuclear DNA molecules may be transcribed; some macronuclear molecules may not have any coding function. Codon bias in hypotrichs is different in many respects from other ciliates and from other eukaryotes.  相似文献   

9.
mRNA specific to cDNA clone pLK109 is present in Dictyostelium discoideum spores, increases about two- to threefold at 0.5 to 1 h during spore germination, and then rapidly decreases. The mRNA is not detectable in vegetative cells or in early multicellular development on filters, but is present late during development, approximately at the time of sporulation. 109 mRNA in spores is 700 nucleotides in length but this is processed during germination by shortening of the poly(A) tail to about 600 nucleotides at 1 to 1.5 hours. pLK109 is a member of a multigene family containing three separate genes, and we have isolated and sequenced all of them. All three sequences code for deduced proteins of 127 amino acid residues, with only a few amino acid differences among them. Gene 1 represents the "transcribed" gene, since all 33 cDNAs we isolated are identical with the cDNA pLK109 and the coding region of this gene. Other open reading frames are in close proximity to each of the 109 sequences. About 200 base-pairs 3' to the gene 1 109 sequence is an open reading frame in the opposite orientation. Gene 2 fragment contains a sequence that codes for a protein similar to trypanosome alpha-tubulin 728 base-pairs 5' to the 109 sequence. Gene 3 fragment possesses two additional putative coding regions, one 5' and another 3' to the 109 gene. There is a remarkable similarity between the 5' upstream regions of all three genes. Each possesses a normal Dictyostelium TATA box and the usual T stretch. In addition, there are many other portions of about 400 to 500 base-pairs of the 5' regions that are either identical for long stretches or very similar.  相似文献   

10.
The cDNA of mouse pancreatic mRNA has been cloned. After the library was screened with a rat ribonuclease cDNA probe, the positive clones were isolated and sequenced. There were no differences from the previously determined protein sequence. The mRNA codes for a preribonuclease of 149 amino acid residues including a signal peptide of 25 amino acids. The 3' noncoding region has a length of 260 bp, and the total mRNA length is approximately 940 bp. Comparison with the rat pancreatic ribonuclease sequence showed a high rate of nucleotide substitution. Within the coding region, nonsynonymous and synonymous substitution rates are 4.3 X 10(-9) and 15 X 10(-9) nucleotide substitutions/site/year, respectively. The latter value is one of the highest rates observed in the molecular evolution of mammalian nuclear genes. In the signal sequences the synonymous substitution rate is much lower and about the same as the nonsynonymous rate. Signal sequences of other mouse and rat proteins also exhibit little difference between synonymous and nonsynonymous rates. The sequences of rat and mouse pancreatic ribonuclease messengers were compared with those of bovine pancreatic, seminal, and brain ribonuclease. While the 3' noncoding regions of rat and mouse are very similar, as are those of the three bovine messengers, there is no significant similarity between both rodent and the three bovine messengers for the greater part of these regions. There is a duplication of approximately 50 nucleotides in the 3' noncoding region of the bovine messengers, with a region rich in A and C in between. The presence of this structural feature may be correlated with recent gene duplications that have occurred in the bovine genome.  相似文献   

11.
The subtelomeric regions of macronuclear gene-sized DNA molecules from Stylonychia lemnae were analyzed. The results obtained indicate that these regions show a highly ordered and common sequence organization: Immediately adjacent to the telomeric sequence a short inverted repeat sequence is found, followed by another 7–9 bp inverted repeat sequence at approximately position 40. A 10 bp consensus sequence found in the subtelomeric regions of all gene-sized DNA molecules is found at approximately position 60 and in addition at about the same position palindromic sequences showing no homology to each other are localized. The biological significance of this sequence organization is discussed. © 1993Wiley-Liss, Inc.  相似文献   

12.
Transitivity, the spread of RNA silencing along primary target sequences, leads to the degradation of secondary targets that have no sequence homology to the initial silencing trigger. We demonstrate that increasing the distance between direct and adjacent target sequences in a transgenic primary target delays the onset of silencing of a secondary target gene. Silencing can spread in a 3' to 5' direction over a distance of at least 500 nucleotides (nt), but this requires consistently more time compared to a distance of 98 nt or 250 nt. The efficiency and frequency of transitive silencing of an endogene depends on the length of its sequence homology with the primary target. With a length of 500 nt, efficient silencing can eventually be established in all plants, whereas lengths of 250 nt and 98 nt homology result in less efficient and less frequent suppression. These results suggest that amplification of secondary small interfering RNAs (siRNAs) is a time-requiring process that gradually expands the population of siRNAs until a steady-state level is reached. Moreover, the length of the sequence homology in the primary target providing secondary siRNAs determines whether this steady-state level readily exceeds the threshold necessary for efficient silencing.  相似文献   

13.
A database of sequences of 139 introns from the nematode Caenorhabditis elegans was analyzed using the information measure of Schneider et al. (1986) J. Mol. Biol. 128: 415-431. Statistically significant information is encoded by at least the first 30 nt and last 20 nt of C. elegans introns. Both the quantity and the distribution of information in the 5' splice site sequences differs between the typical short (length less than 75 nt) and rarer long (length greater than 75 nt) introns, with the 5 sites of long introns containing approximately one bit more information. 3' splice site sequences of long and short C. elegans introns differ significantly in the region between -20 and -10 nt.  相似文献   

14.
The process of trans splicing is essential to the maturation of all mRNAs in the Trypanosomatidae, a family of protozoan parasites, and to specific mRNAs in several species of nematode. In Trypanosoma brucei, a 39-nucleotide (nt) leader sequence originating from a small, 139-nt donor RNA (the spliced leader [SL] RNA) is spliced to the 5' end of mRNAs. An intermediate in this trans-splicing process is a Y structure which contains the 3' 100 nt of the SL RNA covalently linked to the pre-mRNA via a 2'-5' phosphodiester bond at the branch point residue. We mapped the branch points in T. brucei alpha- and beta-tubulin pre-mRNAs. The primary branch acceptors for the alpha- and beta-tubulins are 44 and 56 nt upstream of the 3' splice sites, respectively, and are A residues. Minor branch acceptors were detected 42 and 49 nt upstream of the alpha-tubulin splice site and 58 nt upstream of the splice site in beta-tubulin. The regions surrounding these branch points lack homology to the consensus sequences determined for mammalian cells and yeasts; there is also no conservation among the sequences themselves. Thus, the identified sequences suggest that the mechanism of branch point recognition in T. brucei differs from the mechanism of recognition by U2 RNA that has been proposed for other eucaryotes.  相似文献   

15.
16.
In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.  相似文献   

17.
HERV-K113 and HERV-K115 have been considered to be among the youngest HERVs because they are the only known full-length proviruses that are insertionally polymorphic and maintain the open reading frames of their coding genes. However, recent data suggest that HERV-K113 is at least 800,000 years old, and HERV-K115 even older. A systematic study of HERV-K HML2 members to identify HERVs that may have infected the human genome in the more recent evolutionary past is lacking. Therefore, we sought to determine how recently HERVs were exogenous and infectious by examining sequence variation in the long terminal repeat (LTR) regions of all full-length HERV-K loci. We used the traditional method of inter-LTR comparison to analyze all full length HERV-Ks and determined that two insertions, HERV-K106 and HERV-K116 have no differences between their 5' and 3' LTR sequences, suggesting that these insertions were endogenized in the recent evolutionary past. Among these insertions with no sequence differences between their LTR regions, HERV-K106 had the most intact viral sequence structure. Coalescent analysis of HERV-K106 3' LTR sequences representing 51 ethnically diverse individuals suggests that HERV-K106 integrated into the human germ line approximately 150,000 years ago, after the emergence of anatomically modern humans.  相似文献   

18.
19.
The TaiI family sequences are classified as tandem repetitive DNA sequences present in the genome of tribe Triticeae, and are localized in the centromeric regions of common wheat, but in the subtelomeric heterochromatic regions of Leymus racemosus and related species. In this study, we investigated the chromosomal distribution of TaiI family sequences in other Triticeae species. The results demonstrated a centromeric localization in genera Triticum and Aegilops and subtelomeric localization in other genera, thus showing a genus-dependent localization of TaiI family sequences in one or the other region. The copy numbers of TaiI family sequences in species in the same genus varied greatly, whether in the centromeric or subtelomeric regions (depending on genus). We also examined the evolution of TaiI family sequences during polyploidization of hexaploid common wheat. A comparison of chromosomal locations of the major TaiI family signals in common wheat and in its ancestral species suggested that the centromeric TaiI family sequences in common wheat were inherited from its ancestors with little modification, whereas a mixed origin for the B genome of common wheat was indicated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号