首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dihydrofolate reductase activity in duckling erythrocytes was found to be low, while activity in erythrocytes heavily infected with small uninucleate trophozoites was like that of uninfected erythrocytes. Activity of the enzyme in erythrocytes infected with large multinucleate parasites, however, was greatly increased. This activity was 5 times higher in erythrocyte-free large trophozoites than in small ones. The dihydrofolate reductase of P. lophurae differed from the host enzyme in: greater molecular weight; higher sensitivity to pyrimethamine inhibition; pH optimum; substrate and cofactor specificity; and stimulation by salts. The parasite enzyme was partially purified by ammonium sulfate precipitation.  相似文献   

2.
3.
Mitochondrial serine hydroxymethyltransferase, l-serine: tetrahydrofolate 5,10-hydroxymethyl-transferase (EC 2.1.2.1), (m-SHMT) was extracted and highly purified from Euglena gracilis z. The specific activity increased from the crude extract with 10% yield up to 580-fold through the following steps: ammonium sulfate fractionation, DEAE-cellulose column chromatography and rechromatography, and affinity chromatography with l-lysine-Sepharose 4B. The molecular weight of the purified m-SHMT was 88,000 by gel filtration through Sephadex G-200, and 44,000 by SDS-PAGE. One mol of the purified enzyme contained two mol of pyridoxal 5′-phosphate (PLP), indicating that the enzyme is a dimer. Characteristics of the enzyme were examined and compared with SHMTs of other origins. The m-SHMT of Euglena gracilis z had l-threonine aldolase activity as did s-SHMT of the same origin in addition to the usual SHMT activity.  相似文献   

4.
glyA基因及其编码的丝氨酸羟甲基转移酶   总被引:5,自引:1,他引:5  
glyA基因广泛存在于生物体中 ,其编码的丝氨酸羟甲基转移酶 (serinehydroxymethyltransferase,SHMT)催化丝氨酸和甘氨酸之间的相互转化 ,转化反应产生的 5,1 0 亚甲基四氢叶酸 (M THF)提供细胞新陈代谢—碳单位 ,此反应在细胞新陈代谢中处于重要地位。因此 ,研究 glyA基因及其编码的丝氨酸羟甲基转移酶具有重要的意义。介绍了 glyA基因的克隆、序列分析、调控组分和丝氨酸羟甲基转移酶的部分性质。  相似文献   

5.
SYNOPSIS. Plasma membranes of normal duckling erythrocytes were prepared by blender homogenization and nitrogen decompression. Surface membrane vesicles of red cells infected with the avian malaria Plasmodium lophurae were produced by nitrogen decompression. Membranes of erythrocyte-free malaria parasites were removed from cytoplasmic constituents by Dounce homogenization. These membranes were collected by centrifugation in a sucrose step gradient and purified on a linear sucrose gradient. Red cell membranes had a buoyant density of 1.159 g/cm3, whereas plasmodial membranes banded at 2 densities: 1.110 g/cm3 and 1.158 g/cm3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the isolated red cell membranes revealed 7 major protein bands with molecular weights (MW) ranging from 230,000 to 22,000, and 3 glycoprotein bands with MW of 160,000, 88,000 and 37,000. Parasite membranes also had 7 major bands with MW ranging from 100,000 to 22,000. No glycoproteins were identifiable in these membranes. The proteins of the surface membranes from infected red cells had MW similar to those from normal red cells; however, there was some evidence of a reduction in the amount of the high MW polypeptides. The red cell membrane contained 79 nmoles sialic acid/mg membrane protein, whereas plasmodial membranes had 8 nmoles sialic acid/mg membrane protein. The sialic acid content of the surface membranes of infected red cells was significantly smaller than that of normal cells. Lactoperoxidase-glucose oxidase-catalyzed iodination of intact normal and malaria-infected erythrocytes labeled 7 surface components. Although no observable differences in iodinatable proteins were seen in these preparations, there was a striking reduction in the iodinatability of erythrocytic membranes obtained from P. lophurae-infected cells. Erythrocyte-free plasmodia bound very little radioactive iodine; the small amount of radioactivity was distributed among 3 major bands with MW of 42,000, 32,000 and 28,000. It is suggested that the alterations of the surface of the P. lophurae-infected erythrocyte do not occur by a wholesale insertion of plasmodial membrane proteins into the red cell plasma membrane, but rather that there are parasite-mediated modifications of existing membrane polypeptides.  相似文献   

6.
Plasmodium lophurae-infected red blood cells utilized considerably greater quantities of glucose than did uninfected duckling red cells. Kinetic analysis of glucose transport showed: (A). Below a concentration of 2 mM in the medium the uptake process followed Michaelis-Menten kinetics (carrier-mediated facilitated diffusion) whereas at concentrations greater than this simple diffusion became the main mode of entry. (B). The apparent transport constants, Kt, for normal and infected cells were similar. However there was an 8-fold increase in the maximal velocity, Vmax, for infected cells. (C). “Free” malaria parasites had a significantly lower Kt and a higher Vmax than did normal or infected red cells. Entry and exit studies with the nonmetabolizable sugar analog, 3-0-methyl glucose, demonstrated that the enhanced rate of uptake by infected cells involved an increase in the simple diffusion component and the degree of enhancement was correlated with the size of the intracellular parasite. Competition experiments suggested that in the malaria-infected cell one locus is involved in the carrier-mediated transport of glucose, mannose and galactose whereas another locus transports fructose and/or glycerol. These results indicate that the enhanced entry of glucose into the malaria-infected red cell is a consequence of factors other than increased glucose catabolism by the host-parasite complex, and the host cell's capacity to take up greater quantities of sugar directly involves the growing intracellular plasmodium.  相似文献   

7.
SYNOPSIS. Plasmodium lophurae cannot carry out extensive de novo purine biosynthesis, and depends upon the host erythrocyte for a supply of preformed purines. Exogenous purines taken up by the parasitized erythrocyte may constitute a major source of preformed purines for parasite nucleotide biosynthesis. The uptake of exogenous radioactive purine compounds and their incorporation into nucleic acids by duck erythrocytes parasitized with P. lophurae, uninfected erythrocytes, and erythrocyte-free parasites were studied. P. lophurae was found to have a remarkable ability, both intracellularly and extracellularly, to take up and utilize certain exogenous purines such as adenosine, inosine, and hypoxanthine. Incorporation studies indicated that this species has a functional purine salvage pathway by which inosine, hypoxanthine, and adenosine can be converted to both adenine and guanine nucleotides.  相似文献   

8.
SYNOPSIS. Cytoplasmic polyribosomes were isolated from the avian malaria parasite Plasmodium lophurae by lysis with 0.15% Triton X-100 followed by high speed centrifugation through a discontinuous sucrose gradient. Polyribosomes were protected from nuclease degradation using 100 μg/ml heparin or 50 μg/ml dextran sulfate. Cell-free incorporation of radioisotope-labeled amino acids required a pH 5 fraction (duck reticulocyte), Mg2+, and an energy-generating system. The protein synthesizing system was stimulated by the addition of polyuridylic acid. Optimum conditions for protein synthesis by the plasmodial system are described. The effects of drugs on the cell-free protein synthesizing system using duck reticulocyte and plasmodial ribosomes are reported.  相似文献   

9.
SYNOPSIS. Pyridoxine kinase enzyme activity was greatly increased in duckling erythrocytes infected with Plasmodium lophurae. Pyridoxine kinase activity in parasites freed from erythrocytes was much greater than that of uninfected erythrocytes. The apparent Km for pyridoxine of the parasite enzyme was 6.6 × 10-5 M whereas the host red cell enzyme Km was 1.9 × 10-6 M. Deoxypyridoxine inhibited host and parasite pyridoxine kinase activity with an apparent Ki of 1.5 × 10-6 and 8.6 × 10-6 M, respectively. These results suggest that the vitamin B6 metabolism of the malaria parasites is distinct and separate from that of the host erythrocytes.  相似文献   

10.
SYNOPSIS Exoerythrocytic merozoites of Plasmodium lophurae grown in embryonic turkey brain cells were successfully separated from host cell material by elution from a DEAE-cellulose column at ionic strength 0.22. Purity of parasite samples was assessed by sodium dodecyl sulphate acrylamide gel electrophoresis and electron microscopy. Increasing the ionic strength gave greater recoveries of merozoites, but host cell contamination increased.  相似文献   

11.
SYNOPSIS. Although large hemoglobin inclusions are observed in intraerythrocytic Babesia microti parasites, they are absent from parasites freed of hamster red cells by immune lysis with antihamster erythsocyte serum. Babesia microti has no cytostome. This parasite, therefore, does not appear to feed by phagocytosis of large boluses of hemoglobin, as does Plasmodium. To determine whether Babesia can pinocytose protein, free parasites were fed ferritin in an in vitro system. Ferritin was taken up from the entire cell surface into narrow channels within 15 min at 37 C. Only merozoites, with their pellicular complex, failed to take up the protein. By 60 min, the ferritin was highly concentrated in many channels and vesicles, which formed interconnecting stacks. The ferritin-containing channels became associated with membrane whorls of the multimembranous structure. Membrane whorls were also observed in the process of extrusion in samples incubated for longer times. These events may represent steps in the digestion and excretion of the pinocytosed protein. Empty channels formed when Babesia was fed albumin. The diaminobenzidine reaction for hemoprotein was positive for the channels in both free and intraerythrocytic babesias. The staining reaction was completely inhibited by cyanide, but not at all by aminotriazole. These results further suggest that Babesia pinocytoses hemoglobin in vivo. Plasmodium lophurae parasites freed of red cells by immune lysis are surrounded by 2 membranes and apparently can ingest ferritin only through the cytostome. Extracellular cytostomal feeding involves both membranes, as it does in vivo. Ferritin was found in food vacuoles, some of which contained hemoglobin ingested before parasite isolation, connected to or near the cytostome. In both Plasmodium and Babesia low temperature inhibited ferritin uptake.  相似文献   

12.
Duck malaria parasites (Plasmodium lophurae), synchronized at the uninucleate trophozoite stage, were freed from their host erythrocytes by immune lysis and cultured extracellularly in duck erythrocyte extract medium. At 0 time, 1, 2, and 3 days, samples were taken for light and electron microscopy and for measurement of incorporation of [14C]-methionine or [14C]-proline. For 2 days the parasites developed fairly normally, progressing from large trophozoites-early schizonts at 1 day to segmenters-forming merozoites at 2 days. However, the 3-day samples showed signs of deterioration: incorporation of amino acids dropped; the percentage degenerate cells rose; the progression of developmental stages slowed. At the fine structure level 2 abnormalities were observed which may indicate the limits of extracellular cultivation in vitro. Through 2 days of culture all parasites were surrounded by 2 membranes. The 3-day samples contained some organisms with only one membrane, which may have arisen from merozoites produced extracellularly. The 2nd alteration was in the food vacuoles, which were progressively fewer, smaller, and less dense in the cultured samples and may indicate an abnormality in the extracellular parasite's feeding mechanism.  相似文献   

13.
14.
SYNOPSIS. Autoradiography was used to localize the distribution of l -[3H]histidine incorporated in vitro by developing segmenters of Plasmodium lophurae. Under conditions used for the visualization of high specific activity loci, radioactivity appeared associated mainly with the histidine-rich protein of cytoplasmic granules as well as with rhoptries and micronemes of merozoites. The isolated histidine-rich protein caused agglutination of erythrocytes and increased their osmotic fragility. Based on the observed evidence suggesting the presence of this histidine-rich protein in the polar organelles of merozoites and its reactivity with erythrocyte membranes, the hypothesis that such a protein may have a function in the penetration of merozoites is proposed.  相似文献   

15.
丝氨酸羟甲基转移酶(SHMT)是植物细胞光合作用和一碳代谢的关键酶之一,研究SHMT基因的序列信息对揭示其蛋白结构与功能具有重要指导意义。从白及转录组数据库中分离得到SHMT基因(NCBI登录号:MG544187),运用生物信息学软件对该基因进行序列分析。结果显示:该基因长度为1 953 bp,编码的蛋白质长度为471aa、分子量为51.861 06 kD、理论等电点为7.17,SHMT二级结构主要由无规则卷曲结构和α螺旋结构组成,核苷酸和氨基酸序列与铁皮石斛SHMT相似性最高,达93%,结构域分析发现该蛋白具有高度保守结构域,三级结构预测为四聚体结构,跨膜区及信号肽分析发现该蛋白无跨膜区及信号肽,亚细胞定位分析发现该蛋白主要位于细胞质、叶绿体亚细胞器位置。本分析结果为白及SHMT的应用研究提供了基础数据,也为植物SHMT基因的分子研究提供了理论依据及基础资料。  相似文献   

16.
Serine hydroxymethyltransferase (SHMT), which catalyzes the reversible reaction of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate, is one of the three enzymes in dTMP synthesis pathway that is highly active during cell division and has been proposed as a potential chemotherapeutic target in infectious diseases and cancer. This is the first study to describe nucleotide and amino acid sequences of SHMT from the malaria parasite Plasmodium vivax. Sequencing of 12 P. vivax isolates revealed limited polymorphisms in 3 noncoding regions. Its biological function is also reported.  相似文献   

17.
Serine hydroxymethyltransferase (SHMT) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes a hydroxymethyl group transfer from l-serine to tetrahydrofolate (H4folate) to yield glycine and 5,10-methylenetetrahydrofolate (CH2-H4folate). SHMT is crucial for deoxythymidylate biosynthesis and a target for antimalarial drug development. Our previous studies indicate that PvSHMT catalyzes the reaction via a ternary complex mechanism. To define the kinetic mechanism of this catalysis, we explored the PvSHMT reaction by employing various methodologies including ligand binding, transient, and steady-state kinetics as well as product analysis by rapid-quench and HPLC/MS techniques. The results indicate that PvSHMT can bind first to either l-serine or H4folate. The dissociation constants for the enzyme·l-serine and enzyme·H4folate complexes were determined as 0.18 ± 0.08 and 0.35 ± 0.06 mm, respectively. The amounts of glycine formed after single turnovers of different preformed binary complexes were similar, indicating that the reaction proceeds via a random-order binding mechanism. In addition, the rate constant of glycine formation measured by rapid-quench and HPLC/MS analysis is similar to the kcat value (1.09 ± 0.05 s−1) obtained from the steady-state kinetics, indicating that glycine formation is the rate-limiting step of SHMT catalysis. This information will serve as a basis for future investigation on species-specific inhibition of SHMT for antimalarial drug development.  相似文献   

18.
19.
Chicken erythrocytes parasitized by Plasmodium lophurae were cultured in vitro in the presence of glycine-2-14C, glycine-U-14C, and 14C-Na-formate for 10–16 hr. Purines isolated from the acid-soluble fraction (ASF), RNA and DNA of parasitized blood exposed to 14C-glycine contained specific activities equivalent to those of uninfected erythrocyte purines. However, parasitized blood samples incorporated 14C-Na-formate into ASF, RNA and DNA purines to a much greater extent than uninfected blood; the ratio of incorporated formate vs glycine by infected blood samples indicated the absence of a complete de novo purine pathway, but failed to rule out the existence of a partial de novo purine pathway in the host-parasite complex.Adenine-8-14C and 14C-orotic acid served as purine and pyrimidine nucleotide precursors, respectively, in the P. lophurae-chicken erythrocyte complex; 14C-uracil did not serve as an effective pyrimidine nucleotide precursor under in vitro conditions.Autoradiographic studies failed to demonstrate either the in vivo or in vitro incorporation of 3H-thymidine or 3H-uridine into the nucleic acids of intraerythrocytic stages of P. lophurae.  相似文献   

20.
A mitochondrial serine hydroxymethyltransferase (EC 2.1.2.1) has for the first time been purified close to homogeneity from a photosynthetically active tissue, spinach ( Spinacea oleracea L. cv Viking II) leaves. The specific activity of the enzyme was 7.8 μmol (mg protein)−1 min−1 using L-serine as substrate. The enzyme was stable for at least 8 weeks at 4°C in the presence of folate. The pH optimum was at pH 8.5 where the enzyme had a Km for L-serine of 0.9 m M . Carboxymethoxylamine was a strong competitive inhibitor with a K1 of 1.4 μM. An absorption spectrum taken of the enzyme in the presence of glycine and tetrahydrofolate showed a peak at 492 nm, probably originating from a substrate-enzyme complex. The molecular weight obtained by gel filtration was 209 kDa. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis of the purified enzyme showed that the apparent molecular weight of the subunit was 53 kDa, indicating four subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号