首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Impacts of ozone and CO2 enrichment, alone and in combination, on leaf anatomical and ultrastructural characteristics, nutrient status and cell wall chemistry in two European silver birch (Betula pendula Roth) clones were studied. The young soil‐growing trees were exposed in open‐top chambers over three growing seasons to 2 × ambient CO2 and/or ozone concentrations in central Finland. The trees were measured for changes in altogether 35 variables of leaf structure, nutrients and cell wall chemistry of green leaves, and 20 of the measured variables were affected by CO2 and/or O3. Elevated CO2 increased the size of chloroplasts and starch grains, number of mitochondria, P : N ratio, and contents of cell wall hemicellulose. Elevated CO2 decreased the total leaf thickness, specific leaf area, concentrations of N, K, Cu, S and Fe, and contents of cell wall α‐cellulose, uronic acids, acid‐soluble lignin and acetone‐soluble extractives. Elevated ozone led to thinner leaves, higher palisade to spongy ratio, increased number of peroxisomes and mitochondria, reduced content of Mn, Zn, Cu, hemicellulose and uronic acids, and lower Mn : N and Zn : N ratios. In the combined exposure, interactions were antagonistic. Ultrastructural changes became more evident towards the end of the exposure. Young leaves were tolerant against ozone‐caused oxidative stress, whereas oxidative H2O2 accumulation was found in older leaves. CO2 enrichment improved ozone tolerance not only through increased photosynthesis rates, but also through changes in cell wall chemistry (hemicellulose, in particular). However, nutrient imbalances due to ozone and/or CO2 may predispose the trees to other biotic and abiotic stresses. Down‐regulation and up‐regulation of photosynthesis under elevated CO2 through anatomical changes is discussed.  相似文献   

2.
Elevated atmospheric CO2 concentration [CO2] and different levels of nitrogen (N) nutrition can influence the amount of excess excitation energy in photosystem (PS) II and related photosynthetic properties. The interactive effect of two [CO2] levels (ambient: 360 µM M−1 and elevated: 720 µM M−1) and two N levels (high: 700 mg N plant−1 and low: 100 mg N plant−1) on these properties was examined in seedlings of Japanese white birch (Betula platyphylla var. japonica) using simultaneous measurements of gas exchange and chlorophyll fluorescence. Photosynthetic acclimation to elevated [CO2], as indicated by a decline in carboxylation efficiency (CE), was observed in plants grown at elevated [CO2] especially under low N. Elevated [CO2] resulted in a decrease in area-based leaf N content (Narea) irrespective of N treatment. The adverse effect of elevated [CO2] and low N on CE may have been exacerbated by a greater accumulation of leaf sugar and starch contents in these plants leading to a lower electron transport rate (ETR). While these plants also showed higher non-photochemical quenching (NqP) that could offset the reduction in energy dissipation through ETR to some extent, they still have a higher risk of photoinhibition from excessive excitation energy in PSII as indicated by a decrease in photochemical quenching (qP). However, chronic photoinhibition was not observed in plant grown at elevated [CO2] and low N because they showed no difference in Fv/Fm (the maximum photochemical efficiency of PSII) from those grown at ambient [CO2] and low N after an overnight dark adaptation. High levels of NqP in plants grown at elevated [CO2] and low N reflect a near saturation of thermal energy dissipation. This impaired capacity of photoprotection would render these plants more vulnerable to photoinhibition in the event of additional environmental stresses such as drought, low or high temperature.  相似文献   

3.
Two silver birch (Betula pendula Roth) clones K1659 and V5952 were grown in open‐top chambers over 3 years (age 7–9 years). The treatments were increased CO2 concentration (+CO2, 72 Pa), increased O3 concentration (+O3, 2 × ambient O3 with seasonal AOT40 up to 28 p.p.m. h) and in combination (+CO2 + O3). Thirty‐seven photosynthetic parameters were measured in the laboratory immediately after excising leaves using a computer‐operated routine of gas exchange and optical measurements. In control leaves the photosynthetic parameters were close to the values widely used in a model (Farquhar, von Caemmerer and Berry, Planta 149, 78–90, 1980). The distribution of chlorophyll between photosystem II and photosystem I, intrinsic quantum yield of electron transport, uncoupled turnover rate of Cyt b6f, Rubisco specificity and Km (CO2) were not influenced by treatments. Net photosynthetic rate responded to +CO2 with a mean increase of 17% in both clones. Dry weight of leaves increased, whereas protein, especially Rubisco content and the related photosynthetic parameters decreased. Averaged over 3 years, eight and 17 mechanistically independent parameters were significantly influenced by the elevated CO2 in clones K1659 and V5952, respectively. The elevated O3 caused a significant decrease in the average photosynthetic rate of clone V5952, but not of clone K1659. The treatment caused changes in one parameter of clone K1659 and in 11 parameters of clone V5952. Results of the combined treatment indicated that +O3 had less effect in the presence of +CO2 than alone. Interestingly, changes in the same photosynthetic parameters were observed in chamberless grown trees of clone V5952 as under +O3 treatment in chambers, but this was not observed for clone K1659. These results suggest that during chronic fumigation, at concentrations below the threshold of visible leaf injuries, ozone influenced the photosynthetic parameters as a general stress factor, in a similar manner to weather conditions that were more stressful outside the chambers. According to this hypothesis, the sensitivity of a species or a clone to ozone is expected to depend on the growth conditions: the plant is less sensitive to ozone if the conditions are close to optimal and it is more sensitive to ozone under conditions of stress.  相似文献   

4.
5.
Small birch plants were grown for up to 80 d in a climate chamber at varied relative addition rates of nitrogen in culture solution, and at ambient (350 μmol mol-1) or elevated (700 μmol mol-1) concentrations of CO2. The relative addition rate of nitrogen controlled relative growth rate accurately and independently of CO2 concentration at sub-optimum levels. During free access to nutrients, relative growth rate was higher at elevated CO2. Higher values of relative growth rate and net assimilation rate were associated with higher values of plant N-concentration. At all N-supply rates, elevated CO2 resulted in higher values of net assimilation rate, whereas leaf weight ratio was independent of CO2. Specific leaf area (and leaf area ratio) was less at higher CO2 and at lower rates of N-supply. Lower values of specific leaf area were partly because of starch accumulation. Nitrogen productivity (growth rate per unit plant nitrogen) was higher at elevated CO2. At sub-optimal N-supply, the higher net assimilation rate at elevated CO2 was offset by a lower leaf area ratio. Carbon dioxide did not affect root/shoot ratio, but a higher fraction of plant dry weight was found in roots at lower N-supply. In the treatment with lowest N-supply, five times as much root length was produced per amount of plant nitrogen in comparison with optimum plants. The specific fine root length at all N-supplies was greater at elevated CO2. These responses of the root system to lower N-supply and elevated CO2 may have a considerable bearing on the acquisition of nutrients in depleted soils at elevated CO2. The advantage of maintaining steady-state nutrition in small plants while investigating the effects of elevated CO2 on growth is emphasized.  相似文献   

6.
7.
We studied the three‐way interaction of elevated CO2, nitrogen (N), and temperature (T), and the two‐way interaction of elevated CO2 and early‐season defoliation on the secondary chemistry and resistance of Eurasian silver birch (Betula pendula) and North American paper birch (B. papyrifera) against the Eurasian hare (Lepus timidus) and the North American eastern cottontail rabbit (Sylvilagus floridanus), respectively. Elevated CO2 decreased the palatability of winter‐dormant silver and paper birch stems to both hares and rabbits, respectively. But the effect on hares was only apparent at intermediate levels of N fertilization. Elevated T had no effect on palatability. The effects of elevated CO2, N, and T on levels of silver birch bark phenolics and terpenoids were dominated by two‐way interactions between N and CO2, and N and T. Generally, however, N amendments elicited a parabolic response in carbon partitioning to most biosynthetic classes of silver birch phenolics (i.e. highest concentrations occurring at intermediate N). CO2 elevation was most enhancing at highest levels of N. On the other hand, T increases, more often than not, elicited reductions in phenolics, but especially so at the highest N level. In the case of B. papyrifera, elevated CO2 increased carbon partitioning to Folin‐Denis stem and branch phenolics and condensed tannins. Early‐season defoliation, on the other hand, had no effect on phenolics and tannins but lowered both N and energy levels of branches. Elevated CO2 substantially ameliorated the negative effects of severe defoliation on tree growth. These results support the hypothesis that continuing anthropogenic alterations of the atmosphere may trigger significant changes in plant phenotypic resistance to mammalian herbivores owing to an increasing net carbon balance between the highly vagile supply and demand capacities of plant carbon sources and sinks.  相似文献   

8.
The responses of photosynthesis to high light and low temperature were studied in vines cultivated in the greenhouse in low light. Exposure to high light (1000 /umol m?2 s?1) or low temperature (5 °C) alone had no measurable effect on the photosynthetic processes, but the combination of high light and low temperature caused rapid loss of photosynthetic capacity and a decrease in the efficiency of photosynthetic energy conversion. After a 15 h exposure to 5°C at high light, the Fv/sb/Fmratio had decreased by 80% and the apparent quantum yield by 75%. Nevertheless, when the leaves were returned to low light at 22°C, these parameters recovered rapidly. The foliar pools of ascorbate and glutathione decreased in the first hours of photoinhibitory treatment while the zeaxanthin content increased from negligible levels to about 50% of the total foliar xanthophyll pool. There was a clear correlation between the zeaxanthin content of the leaves and their Fv/Fm ratio during both photoinhibition and recovery. However, there was also a good correlation between the decrease in theFv Fm ratio and the measured decrease in the total foliar levels of the antioxidants ascorbate and glutathione. The amount of D, protein diminished over the same period as the zeaxanthin levels were increasing. This approach, involving simultaneous measurements of several parameters considered to influence photosystemy II activity, clearly demonstrates that measured decreases in Fv/Fm may not simply be related to zeaxanthin levels or to amounts of D1 protein alone but result from multifactoral influences.  相似文献   

9.
10.
11.
In the present open‐top chamber experiment, two silver birch clones (Betula pendula Roth, clone 4 and clone 80) were exposed to elevated levels of carbon dioxide (CO2) and ozone (O3), singly and in combination, and soil CO2 efflux was measured 14 times during three consecutive growing seasons (1999–2001). In the beginning of the experiment, all experimental trees were 7 years old and during the experiment the trees were growing in sandy field soil and fertilized regularly. In general, elevated O3 caused soil CO2 efflux stimulation during most measurement days and this stimulation enhanced towards the end of the experiment. The overall soil respiration response to CO2 was dependent on the genotype, as the soil CO2 efflux below clone 80 trees was enhanced and below clone 4 trees was decreased under elevated CO2 treatments. Like the O3 impact, this clonal difference in soil respiration response to CO2 increased as the experiment progressed. Although the O3 impact did not differ significantly between clones, a significant time × clone × CO2× O3 interaction revealed that the O3‐induced stimulation of soil respiration was counteracted by elevated CO2 in clone 4 on most measurement days, whereas in clone 80, the effect of elevated CO2 and O3 in combination was almost constantly additive during the 3‐year experiment. Altogether, the root or above‐ground biomass results were only partly parallel with the observed soil CO2 efflux responses. In conclusion, our data show that O3 impacts may appear first in the below‐ground processes and that relatively long‐term O3 exposure had a cumulative effect on soil CO2 efflux. Although the soil respiration response to elevated CO2 depended on the tree genotype as a result of which the O3 stress response might vary considerably within a single tree species under elevated CO2, the present experiment nonetheless indicates that O3 stress is a significant factor affecting the carbon cycling in northern forest ecosystems.  相似文献   

12.
13.
There is considerable interest in modeling isoprene emissions from terrestrial vegetation, because these emissions exert a principal control over the oxidative capacity of the troposphere. We used a unique field experiment that employs a continuous gradient in CO2 concentration from 240 to 520 ppmv to demonstrate that isoprene emissions in Eucalyptus globulus were enhanced at the lowest CO2 concentration, which was similar to the estimated CO2 concentrations during the last Glacial Maximum, compared with 380 ppmv, the current CO2 concentration. Leaves of Liquidambar styraciflua did not show an increase in isoprene emission at the lowest CO2 concentration. However, isoprene emission rates from both species were lower for trees grown at 520 ppmv CO2 compared with trees grown at 380 ppmv CO2. When grown in environmentally controlled chambers, trees of Populus deltoides and Populus tremuloides exhibited a 30–40% reduction in isoprene emission rate when grown at 800 ppmv CO2, compared with 400 ppmv CO2. P. tremuloides exhibited a 33% reduction when grown at 1200 ppmv CO2, compared with 600 ppmv CO2. We used current models of leaf isoprene emission to demonstrate that significant errors occur if the CO2 inhibition of isoprene is not taken into account. In order to alleviate these errors, we present a new model of isoprene emission that describes its response to changes in atmospheric CO2 concentration. The model logic is based on assumed competition between cytosolic and chloroplastic processes for pyruvate, one of the principal substrates of isoprene biosynthesis.  相似文献   

14.
CO2 and H2O vapor exchange were measured by enclosing citrus (Citrus sinensis cv. Sour Orange) leaves in a temperature controlled transparent leaf chamber. Introduction of dry air into the closed circuit gas flow caused cyclic oscillation in CO2 and H2O vapor exchange. It is suggested that oscillation in the CO2 exchange at the CO2 compensation concentration is due to oscillation in non-stomatal resistance to CO2. Three types of oscillation were observed: 3–6 min (peak to peak) in young leaves, 30 min in mature leaves, and 160 min in old leaves.  相似文献   

15.
CO2 exchange rates per unit dry weight, measured in the field on attached fruits of the late-maturing Cal Red peach cultivar, at 1200 μmol photons m?2S?1 and in dark, and photosynthetic rates, calculated by the difference between the rates of CO2 evolution in light and dark, declined over the growing season. Calculated photosynthetic rates per fruit increased over the season with increasing fruit dry matter, but declined in maturing fruits apparently coinciding with the loss of chlorophyll. Slight net fruit photosynthetic rates ranging from 0. 087 ± 0. 06 to 0. 003 ± 0. 05 nmol CO2 (g dry weight)?1 S?1 were measured in midseason under optimal temperature (15 and 20°C) and light (1200 μmol photons m?2 S?1) conditions. Calculated fruit photosynthetic rates per unit dry weight increased with increasing temperatures and photon flux densities during fruit development. Dark respiration rates per unit dry weight doubled within a temperature interval of 10°C; the mean seasonal O10 value was 2. 03 between 20 and 30°C. The highest photosynthetic rates were measured at 35°C throughout the growing season. Since dark respiration rates increased at high temperatures to a greater extent than CO2 exchange rates in light, fruit photosynthesis was apparently stimulated by high internal CO2 concentrations via CO2 refixation. At 15°C, fruit photosynthetic rates tended to be saturated at about 600 μmol photons m?2 S?1. Young peach fruits responded to increasing ambient CO2 concentrations with decreasing net CO2 exchange rates in light, but more mature fruits did not respond to increases in ambient CO2. Fruit CO2 exchange rates in the dark remained fairly constant, apparently uninfluenced by ambient CO2 concentrations during the entire growing season. Calculated fruit photosynthetic rates clearly revealed the difference in CO2 response of young and mature peach fruits. Photosynthetic rates of younger peach fruits apparently approached saturation at 370 μl CO21?2. In CO2 free air, fruit photosynthesis was dependent on CO2 refixation since CO2 uptake by the fruits from the external atmosphere was not possible. The difference in photosynthetic rates between fruits in CO2-free air and 370 μl CO2 1?1 indicated that young peach fruits were apparently able to take up CO2 from the external atmosphere. CO2 uptake by peach fruits contributed between 28 and 16% to the fruit photosynthetic rate early in the season, whereas photosynthesis in maturing fruits was supplied entirely by CO2 refixation.  相似文献   

16.
Diffusion of CO2 and other gases inside leaves   总被引:11,自引:2,他引:9  
  相似文献   

17.
High-light effects on CO2 fixation gradients across leaves   总被引:2,自引:1,他引:1  
Chlorophyll fluorescence and internal patterns of 14CO2 fixation were measured in sun and shade leaves of spinach after treatment with various light intensities. When sun leaves were irradiated with 2000μmol m?2 s?1 for 2h, FV/FM decreased by about 15%, but 14CO2 fixation was unaffected, whereas shade leaves exhibited a 21% decrease in Fv/FM and a 25% decrease in 14CO2 fixation. Irradiation of sun and shade leaves with 4000μmol m?1 for 4 h decreased FV/FM by 30% in sun leaves and 40% in shade leaves, while total 14CO2 fixation decreased by 41% in sun leaves and 55% in shade leaves. After light treatment, gradients of CO2 fixation across leaves were determined by measuring 14CO2 fixed in paradermal leaf sections after a 10s pulse of 14CO2. Gradients of 14CO2 fixation in control sun and shade leaves were identified when expressed on a relative basis and normalized for leaf depth. Treatment of leaves with 2000 μmol PAR m?2 s?1 for 2h did not after patterns of carbon fixation across sun leaves, but slightly altered the pattern in shade leaves. In contrast, treatment of sun and shade leaves with 4000μmol m?2 s?1 for 4h decreased carbon fixation more in the palisade mesophyll cells than in the spongy mesophyll cells of sun and shade leaves, and fixation in medial tissue of shade leaves was dramatically decreased compared to the adaxial and abaxial tissue. The interaction between leaf anatomy and biochemical parameters involved in tolerance to photoinhibition in spinach is discussed.  相似文献   

18.
The effects of elevated CO2 and temperature on the resource allocation pattern and resistance against mammalian herbivores of silver birch (Betula pendula Roth) were studied. Birch seedlings were grown through two growing seasons in closed‐top chambers exposed to four different treatments: ambient CO2 and temperature, elevated atmospheric CO2 (700 ppm) and ambient temperature, elevated temperature (+3°C above ambient) and ambient CO2, and a combination of elevated CO2 and temperature. After winter hardening of the seedlings, the growth of the seedlings was measured and the concentration of secondary compounds such as phenolics and papyriferic acid determined. The top parts of the stem were fed to hares, and the basal parts of the same stems were offered to voles. Elevated CO2 increased the height and basal diameter of the shoots, shoot biomass and total biomass of the seedlings but did not have any effect on secondary chemistry. Elevated temperature increased the height and shoot biomass, but did not have a significant effect on the total biomass of the seedlings. Elevated temperature decreased the concentration of condensed tannins and their precursor, (+)‐catechin, in the top part of the stems, but only the concentration of (+)‐catechin in the basal part of the stems. There were no significant interactive effects between CO2 and temperature on phenolics in the stems, while the concentration of papyriferic acid showed significant interaction in the top part of the stems. This indicates high accumulation of papyriferic acid in ambient CO2 under increased temperature. Consequently, elevated temperature increased the resistance of birch against hares, but did not affect the resistance of the basal parts of the same birches to voles. Our results indicate that the predicted climatic change will not necessarily lead to increased browsing damage by the mountain hare and the field vole to silver birch.  相似文献   

19.
Decomposition of Quercus myrtifolia leaf litter in a Florida scrub oak community was followed for 3 years in two separate experiments. In the first experiment, we examined the effects CO2 and herbivore damage on litter quality and subsequent decomposition. Undamaged, chewed and mined litter generated under ambient and elevated (ambient+350 ppm V) CO2 was allowed to decompose under ambient conditions for 3 years. Initial litter chemistry indicated that CO2 levels had minor effects on litter quality. Litter damaged by leaf miners had higher initial concentrations of condensed tannins and nitrogen (N) and lower concentrations of hemicellulose and C : N ratios compared with undamaged and chewed litter. Despite variation in litter quality associated with CO2, herbivory, and their interaction, there was no subsequent effect on rates of decomposition under ambient atmospheric conditions. In the second experiment, we examined the effects of source (ambient and elevated) of litter and decomposition site (ambient and elevated) on litter decomposition and N dynamics. Litter was not separated by damage type. The litter from both elevated and ambient CO2 was then decomposed in both elevated and ambient CO2 chambers. Initial litter chemistry indicated that concentrations of carbon (C), hemicellulose, and lignin were higher in litter from elevated than ambient CO2 chambers. Despite differences in C and fiber concentrations, litter from ambient and elevated CO2 decomposed at comparable rates. However, the atmosphere in which the decomposition took place resulted in significant differences in rates of decomposition. Litter decomposing under elevated CO2 decomposed more rapidly than litter under ambient CO2, and exhibited higher rates of mineral N accumulation. The results suggest that the atmospheric conditions during the decomposition process have a greater impact on rates of decomposition and N cycling than do the atmospheric conditions under which the foliage was produced.  相似文献   

20.
CO2 uptake and transport in leaf mesophyll cells   总被引:1,自引:3,他引:1  
Abstract The acquisition of inorganic carbon for photosynthetic assimilation by leaf mesophyll cells and chloroplasts is discussed with particular reference to membrane permeation of CO2 and HCO?3. Experimental evidence indicates that at the apoplast pH normally experienced by leaf mesophyll cells (pH 6–7) CO2 is the principal species of inorganic carbon taken up. Uptake of HCO?3 may also occur under certain circumstances (i.e. pH 8.5), but its contribution to the net flux of inorganic carbon is small and HCO?3 uptake does not function as a CO2-concentrating mechanism. Similarly, CO2 rather than HCO?3 appears to be the species of inorganic carbon which permeates the chloroplast envelope. In contrast to many C3 aquatic plants and C4 plants, C3 terrestrial plants lack specialized mechanisms for the acquisition and transport of inorganic carbon from the intercellular environment to the site of photosynthetic carboxylation, but rely upon the diffusive uptake of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号