首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Acid-sensing ion channels (ASICs) are known to be primarily activated by extracellular protons. Recently, we characterized a novel nonproton ligand (2-guanidine-4-methylquinazoline, GMQ), which activates the ASIC3 channel subtype at neutral pH. Using an interactive computational-experimental approach, here we extend our investigation to delineate the architecture of the GMQ-sensing domain in the ASIC3 channels. We first established a GMQ binding mode and revealed that residues Glu-423, Glu-79, Leu-77, Arg-376, Gln-271, and Gln-269 play key roles in forming the GMQ-sensing domain. We then verified the GMQ binding mode using ab initio calculation and mutagenesis and demonstrated the critical role of the above GMQ-binding residues in the interplay among GMQ, proton, and Ca(2+) in regulating the function of ASIC3. Additionally, we showed that the same residues involved in coordinating GMQ responses are also critical for activation of the ASIC3(E79C) mutant by thiol-reactive compound DTNB. Thus, a range of complementary techniques provide independent evidence for the structural details of the GMQ-sensing domain at atomic level, laying the foundation for further investigations of endogenous nonproton ligands and gating mechanisms of the ASIC3 channels.  相似文献   

2.
Acid-sensing ion channels (ASICs), which belong to the epithelial sodium channel/degenerin family, are activated by extracellular protons and are inhibited by amiloride (AMI), an important pharmacological tool for studying all known members of epithelial sodium channel/degenerin. In this study, we reported that AMI paradoxically opened homomeric ASIC3 and heteromeric ASIC3 plus ASIC1b channels at neutral pH and synergistically enhanced channel activation induced by mild acidosis (pH 7.2 to 6.8). The characteristic profile of AMI stimulation of ASIC3 channels was reminiscent of the channel activation by the newly identified nonproton ligand, 2-guanidine-4-methylquinazoline. Using site-directed mutagenesis, we showed that ASIC3 activation by AMI, but not its inhibitory effect, was dependent on the integrity of the nonproton ligand sensing domain in ASIC3 channels. Moreover, the structure-activity relationship study demonstrated the differential requirement of the 5-amino group in AMI for the stimulation or inhibition effect, strengthening the different interactions within ASIC3 channels that confer the paradoxical actions of AMI. Furthermore, using covalent modification analyses, we provided strong evidence supporting the nonproton ligand sensing domain is required for the stimulation of ASIC3 channels by AMI. Finally, we showed that AMI causes pain-related behaviors in an ASIC3-dependent manner. These data reinforce the idea that ASICs can sense nonproton ligands in addition to protons. The results also indicate caution in the use of AMI for studying ASIC physiology and in the development of AMI-derived ASIC inhibitors for treating pain syndromes.  相似文献   

3.
Acid-sensing ion channels (ASICs) are proton-sensitive, sodium-selective channels expressed in the nervous system that sense changes in extracellular pH. These ion channels are sensitive to an increasing number of nonproton ligands that include natural venom peptides and guanidine compounds. In the case of chicken ASIC1, the spider toxin Psalmotoxin-1 (PcTx1) activates the channel, resulting in an inward current. Furthermore, a growing class of ligands containing a guanidine group has been identified that stimulate peripheral ASICs (ASIC3), but exert subtle influence on other ASIC subtypes. The effects of the guanidine compounds on cASIC1 have not been the focus of previous study. Here, we investigated the interaction of the guanidine compound 2-guanidine-4-methylquinazoline (GMQ) on cASIC1 proton activation and PcTx1 stimulation. Exposure of expressed cASIC1 to PcTx1 resulted in biphasic currents consisting of a transient peak followed by an irreversible cASIC1 PcTx1 persistent current. This cASIC1 PcTx1 persistent current may be the result of locking the cASIC1 protein into a desensitized transition state. The guanidine compound GMQ increased the apparent affinity of protons on cASIC1 and decreased the half-maximal constant of the cASIC1 steady-state desensitization profile. Furthermore, GMQ stimulated the cASIC1 PcTx1 persistent current in a concentration-dependent manner, which resulted in a non-desensitizing inward current. Our data suggests that GMQ may have multiple sites within cASIC1 and may act as a “molecular wedge” that forces the PcTx1-desensitized ASIC into an open state. Our findings indicate that guanidine compounds, such as GMQ, may alter acid-sensing ion channel activity in combination with other stimuli, and that additional ASIC subtypes (along with ASIC3) may serve to sense and mediate signals from multiple stimuli.  相似文献   

4.
Acid-sensing ion channels (ASICs) are proton-sensitive, sodium-selective channels expressed in the nervous system that sense changes in extracellular pH. These ion channels are sensitive to an increasing number of nonproton ligands that include natural venom peptides and guanidine compounds. In the case of chicken ASIC1, the spider toxin Psalmotoxin-1 (PcTx1) activates the channel, resulting in an inward current. Furthermore, a growing class of ligands containing a guanidine group has been identified that stimulate peripheral ASICs (ASIC3), but exert subtle influence on other ASIC subtypes. The effects of the guanidine compounds on cASIC1 have not been the focus of previous study. Here, we investigated the interaction of the guanidine compound 2-guanidine-4-methylquinazoline (GMQ) on cASIC1 proton activation and PcTx1 stimulation. Exposure of expressed cASIC1 to PcTx1 resulted in biphasic currents consisting of a transient peak followed by an irreversible cASIC1 PcTx1 persistent current. This cASIC1 PcTx1 persistent current may be the result of locking the cASIC1 protein into a desensitized transition state. The guanidine compound GMQ increased the apparent affinity of protons on cASIC1 and decreased the half-maximal constant of the cASIC1 steady-state desensitization profile. Furthermore, GMQ stimulated the cASIC1 PcTx1 persistent current in a concentration-dependent manner, which resulted in a non-desensitizing inward current. Our data suggests that GMQ may have multiple sites within cASIC1 and may act as a “molecular wedge” that forces the PcTx1-desensitized ASIC into an open state. Our findings indicate that guanidine compounds, such as GMQ, may alter acid-sensing ion channel activity in combination with other stimuli, and that additional ASIC subtypes (along with ASIC3) may serve to sense and mediate signals from multiple stimuli.  相似文献   

5.
Acid-sensing ion channels (ASICs) are neuronal Na+-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.  相似文献   

6.
Candidate amino acids involved in H+ gating of acid-sensing ion channel 1a   总被引:1,自引:0,他引:1  
Acid-sensing ion channels are ligand-gated cation channels, gated by extracellular H(+). H(+) is the simplest ligand possible, and whereas for larger ligands that gate ion channels complex binding sites in the three-dimensional structure of the proteins have to be assumed, H(+) could in principle gate a channel by titration of a single amino acid. Experimental evidence suggests a more complex situation, however. For example, it has been shown that extracellular Ca(2+) ions compete with H(+); probably Ca(2+) ions bound to the extracellular loop of ASICs stabilize the closed state of the channel and have to be displaced before the channel can open. In such a scheme, amino acids contributing to Ca(2+) binding would also be candidates contributing to H(+) gating. In this study we systematically screened more than 40 conserved, charged amino acids in the extracellular region of ASIC1a for a possible contribution to H(+) gating. We identified four amino acids where substitution strongly affects H(+) gating: Glu(63), His(72)/His(73), and Asp(78). These amino acids are highly conserved among H(+)-sensitive ASICs and are candidates for the "H(+) sensor" of ASICs.  相似文献   

7.
Selective regulation of acid-sensing ion channel 1 by serine proteases   总被引:10,自引:0,他引:10  
Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family. ASICs are transiently activated by a rapid drop in extracellular pH. Conditions of low extracellular pH, such as ischemia and inflammation in which ASICs are thought to be active, are accompanied by increased protease activity. We show here that serine proteases modulate the function of ASIC1a and ASIC1b but not of ASIC2a and ASIC3. We show that protease exposure shifts the pH dependence of ASIC1a activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in current response if ASIC1a is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of approximately 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provide evidence that this bi-directional regulation of ASIC1a function also occurs in neurons. Thus, we have identified a mechanism that modulates ASIC function and may allow ASIC1a to adapt its gating to situations of persistent extracellular acidification.  相似文献   

8.
Acid-sensing ion channels (ASICs) are a group of trimeric cation permeable channels gated by extracellular protons that are mainly expressed in the nervous system. Despite the structural information available for ASIC1, there is limited understanding of the molecular mechanism that allows these channels to sense and respond to drops in extracellular pH. In this report, we employed the substituted cysteine accessibility method and site-directed mutagenesis to examine the mechanism of activation of ASIC1a by extracellular protons. We found that the modification of E238C and D345C channels by MTSET reduced proton apparent affinity for activation. Furthermore, the introduction of positively charged residues at position 345 rendered shifted biphasic proton activation curves. Likewise, channels bearing mutations at positions 79 and 416 in the palm domain of the channel showed reduced proton apparent affinity and biphasic proton activation curves. Of significance, the effect of the mutations at positions 79 and 345 on channel activation was additive. E79K-D345K required a change to a pH lower than 2 for maximal activation. In summary, this study provides direct evidence for the presence of two distinct proton coordination sites in the extracellular region of ASIC1a, which jointly facilitate pore opening in response to extracellular acidification.  相似文献   

9.
Acid-sensing ion channels ASIC1a and ASIC1b are ligand-gated ion channels that are activated by H+ in the physiological range of pH. The apparent affinity for H+ of ASIC1a and 1b is modulated by extracellular Ca2+ through a competition between Ca2+ and H+. Here we show that, in addition to modulating the apparent H+ affinity, Ca2+ blocks ASIC1a in the open state (IC50 approximately 3.9 mM at pH 5.5), whereas ASIC1b is blocked with reduced affinity (IC50 > 10 mM at pH 4.7). Moreover, we report the identification of the site that mediates this open channel block by Ca2+. ASICs have two transmembrane domains. The second transmembrane domain M2 has been shown to form the ion pore of the related epithelial Na+ channel. Conserved topology and high homology in M2 suggests that M2 forms the ion pore also of ASICs. Combined substitution of an aspartate and a glutamate residue at the beginning of M2 completely abolished block by Ca2+ of ASIC1a, showing that these two amino acids (E425 and D432) are crucial for Ca2+ block. It has previously been suggested that relief of Ca2+ block opens ASIC3 channels. However, substitutions of E425 or D432 individually or in combination did not open channels constitutively and did not abolish gating by H+ and modulation of H+ affinity by Ca2+. These results show that channel block by Ca2+ and H+ gating are not intrinsically linked.  相似文献   

10.
Extracellular acidification has been shown to generate action potentials (APs) in several types of neurons. In this study, we investigated the role of acid-sensing ion channels (ASICs) in acid-induced AP generation in brain neurons. ASICs are neuronal Na+ channels that belong to the epithelial Na+ channel/degenerin family and are transiently activated by a rapid drop in extracellular pH. We compared the pharmacological and biophysical properties of acid-induced AP generation with those of ASIC currents in cultured hippocampal neurons. Our results show that acid-induced AP generation in these neurons is essentially due to ASIC activation. We demonstrate for the first time that the probability of inducing APs correlates with current entry through ASICs. We also show that ASIC activation in combination with other excitatory stimuli can either facilitate AP generation or inhibit AP bursts, depending on the conditions. ASIC-mediated generation and modulation of APs can be induced by extracellular pH changes from 7.4 to slightly <7. Such local extracellular pH values may be reached by pH fluctuations due to normal neuronal activity. Furthermore, in the plasma membrane, ASICs are localized in close proximity to voltage-gated Na+ and K+ channels, providing the conditions necessary for the transduction of local pH changes into electrical signals. cellular excitability; neuronal signaling; pH  相似文献   

11.
Cystic fibrosis transmembrane conductance regulator (CFTR) functions as both a chloride channel and an epithelial transport regulator, interacting with Na(+) (epithelial sodium channel), Cl(-), renal outer medullary potassium channel(+), and H(2)O channels and some exchangers (i.e. Na(+)/H(+)) and co-transporters (Na(+)-HCO(3)(minus sign), Na(+)-K(+)-2Cl(-)). Acid-sensitive ion channels (ASICs), members of the epithelial sodium channel/degenerin superfamily, were originally cloned from neuronal tissue, and recently localized in epithelia. Because CFTR has been immunocytochemically and functionally identified in rat, murine, and human brain, the regulation of ASICs by CFTR was tested in oocytes. Our observations show that the proton-gated Na(+) current formed by the heteromultimeric ASIC1a/2a channel was up-regulated by wild type but not by Delta F508-CFTR. In contrast, the acid-gated Na(+) current associated with either the homomultimeric ASIC1a or ASIC2a channel was not influenced by wild type CFTR. The apparent equilibrium dissociation constant for extracellular Na(+) for ASIC1a/2a was increased by CFTR, but CFTR had no effect on the gating behavior or acid sensitivity of ASIC1a/2a. CFTR had no effect on the pH activation of ASIC1a/2a. We conclude that wild type CFTR elevates the acid-gated Na(+) current of ASIC1a/2a in part by altering the kinetics of extracellular Na(+) interaction.  相似文献   

12.
Proton-gated channels of the ASIC family are widely distributed in the mammalian brain, and, according to the recent data, participate in synaptic transmission. However, ASIC-mediated currents are small, and special efforts are required to detect them. This prompts the search for endogenous ASIC ligands, which can activate or potentiate these channels. A recent finding of the potentiating action of histamine on recombinant homomeric ASIC1a has directed attention to amine-containing compounds. In the present study, we have analyzed the action of histamine, tyramine, and tryptamine on native and recombinant ASICs. None of the compounds caused potentiation of native ASICs in hippocampal interneurons. Furthermore, when applied simultaneously with channel activation, they produced voltage-dependent inhibition. Experiments on recombinant ASIC1a and ASIC2a allowed for an interpretation of these findings. Histamine and tyramine were found to be inactive on the ASIC2a, while tryptamine demonstrated weak inhibition. However, they induce both voltage-dependent inhibition of open channels and voltage-independent potentiation of closed/desensitized channels on the ASIC1a. We suggest that the presence of an ASIC2a subunit in heteromeric native ASICs prevents potentiation but not inhibition. As a result, the inhibitory action of histamine, which is masked by a strong potentiating effect on the ASIC1a homomers, becomes pronounced in experiments with native ASICs.  相似文献   

13.
Acid sensing ion channels (ASICs), Ca2+ and voltage-activated potassium channels (BK) are widely present throughout the central nervous system. Previous studies have shown that when expressed together in heterologous cells, ASICs inhibit BK channels, and this inhibition is relieved by acidic extracellular pH. We hypothesized that ASIC and BK channels might interact in neurons, and that ASICs may regulate BK channel activity. We found that ASICs inhibited BK currents in cultured wild-type cortical neurons, but not in ASIC1a/2/3 triple knockout neurons. The inhibition in the wild-type was partially relieved by a drop in extracellular pH to 6. To test the consequences of ASIC-BK interaction for neuronal excitability, we compared action potential firing in cultured cortical neurons from wild-type and ASIC1a/2/3 null mice. We found that in the knockout, action potentials were narrow and exhibited increased after-hyperpolarization. Moreover, the excitability of these neurons was significantly increased. These findings are consistent with increased BK channel activity in the neurons from ASIC1a/2/3 null mice. Our data suggest that ASICs can act as endogenous pH-dependent inhibitors of BK channels, and thereby can reduce neuronal excitability.  相似文献   

14.
Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that are members of the epithelial Na(+) channel/degenerin family and are transiently activated by extracellular acidification. ASICs in the central nervous system have a modulatory role in synaptic transmission and are involved in cell injury induced by acidosis. We have recently demonstrated that ASIC function is regulated by serine proteases. We provide here evidence that this regulation of ASIC function is tightly linked to channel cleavage. Trypsin cleaves ASIC1a with a similar time course as it changes ASIC1a function, whereas ASIC1b, whose function is not modified by trypsin, is not cleaved. Trypsin cleaves ASIC1a at Arg-145, in the N-terminal part of the extracellular loop, between a highly conserved sequence and a sequence that is critical for ASIC1a inhibition by the venom of the tarantula Psalmopoeus cambridgei. This channel domain controls the inactivation kinetics and co-determines the pH dependence of ASIC gating. It undergoes a conformational change during inactivation, which renders the cleavage site inaccessible to trypsin in inactivated channels.  相似文献   

15.
16.
Acid-sensing ion channels (ASICs) are cationic channels activated by extracellular protons. The ASIC3 subunit is largely expressed in the peripheral nervous system, where it contributes to pain perception and to some aspects of mechanosensation. We report here a PDZ-dependent and protein kinase C-modulated association between ASIC3 and the Na+/H+ exchanger regulatory factor-1 (NHERF-1) adaptor protein. We show that NHERF-1 and ASIC3 are co-expressed in dorsal root ganglion neurons. NHERF-1 enhances the ASIC3 peak current in heterologous cells, including F-11 dorsal root ganglion cells, by increasing the amount of channel at the plasma membrane. Perhaps more importantly, we show that the plateau current of ASIC3 can be dramatically increased (10-30-fold) by association with NHERF-1, leading to a significant sustained current at pH 6.6. In the presence of NHERF-1, the ASIC3 subcellular localization is modified, and the channel co-localizes with ezrin, a member of the ezrin-radixin-moesin family of actin-binding proteins, providing the first direct link between ASIC3 and the cortical cytoskeleton. Given the importance of the ASIC3 sustained current in nociceptor excitability, it is likely that NHERF-1 participates in channel functions associated with nociception and mechanosensation.  相似文献   

17.
Acid-sensing ion channels (ASICs) are non-selective cation channels activated by extracellular acidosis associated with many physiological and pathological conditions. A detailed understanding of the mechanisms that govern cell surface expression of ASICs, therefore, is critical for better understanding of the cell signaling under acidosis conditions. In this study, we examined the role of a highly conserved salt bridge residing at the extracellular loop of rat ASIC3 (Asp(107)-Arg(153)) and human ASIC1a (Asp(107)-Arg(160)) channels. Comprehensive mutagenesis and electrophysiological recordings revealed that the salt bridge is essential for functional expression of ASICs in a pH sensing-independent manner. Surface biotinylation and immunolabeling of an extracellular epitope indicated that mutations, including even minor alterations, at the salt bridge impaired cell surface expression of ASICs. Molecular dynamics simulations, normal mode analysis, and further mutagenesis studies suggested a high stability and structural constrain of the salt bridge, which serves to separate an adjacent structurally rigid signal patch, important for surface expression, from a flexible gating domain. Thus, we provide the first evidence of structural requirement that involves a stabilizing salt bridge and an exposed rigid signal patch at the destined extracellular loop for normal surface expression of ASICs. These findings will allow evaluation of new strategies aimed at preventing excessive excitability and neuronal injury associated with tissue acidosis and ASIC activation.  相似文献   

18.
Acid-sensing ion channels (ASICs) are Na(+) channels gated by extracellular H(+). Six ASIC subunits that are expressed in neurons have been characterized. The tarantula toxin psalmotoxin 1 has been reported to potently and specifically inhibit homomeric ASIC1a and has been useful to characterize ASICs in neurons. Recently we have shown that psalmotoxin 1 inhibits ASIC1a by increasing its apparent affinity for H(+). However, the mechanism by which PcTx1 increases the apparent H(+) affinity remained unclear. Here we show that PcTx1 also interacts with ASIC1b, a splice variant of ASIC1a. However, PcTx1 does not inhibit ASIC1b but promotes its opening; under slightly acidic conditions, PcTx1 behaves like an agonist for ASIC1b. Our results are most easily explained by binding of PcTx1 with different affinities to different states (closed, open, and desensitized) of the channel. For ASIC1b, PcTx1 binds most tightly to the open state, promoting opening, whereas for ASIC1a, it binds most tightly to the open and the desensitized state, promoting desensitization.  相似文献   

19.
The acid-sensing ion channels (ASICs) open in response to extracellular acidic pH, and individual subunits display differential sensitivity to protons and calcium. ASIC1a acts as a high affinity proton sensor, whereas ASIC2a requires substantially greater proton concentrations to activate. Using chimeras composed of ASIC1a and ASIC2a, we determined that two regions of the extracellular domain (residues 87–197 and 323–431) specify the high affinity proton response of ASIC1a. These two regions appear to undergo intersubunit interactions within the multimeric channel to specify proton sensitivity. Single amino acid mutations revealed that amino acids around Asp357 play a prominent role in determining the pH dose response of ASIC1a. Within the same region, mutation F352L abolished PcTx1 modulation of ASIC1a. Surprisingly, we determined that another area of the extracellular domain was required for calcium-dependent regulation of ASIC1a activation, and this region functioned independently of high affinity proton sensing. These results indicate that specific regions play overlapping roles in pH-dependent gating and PcTx1-dependent modulation of ASIC1a activity, whereas a distinct region determines the calcium dependence of ASIC1a activation.The acid-sensing ion channels (ASICs)3 are proton-gated ion channels expressed in neurons throughout the central and peripheral nervous system (13). ASICs are activated by extracellular acidosis, and protons act as ligands triggering channel opening (4). Disruption of the accn2 gene (which encodes ASIC1) dramatically reduces proton-gated currents in central neurons and alters a variety of behaviors, including fear, learning, and memory (5, 6). ASIC1 also contributes to neuronal damage and death during the prolonged acidosis accompanying cerebral ischemia (7). Specifically, mice with disruptions in the accn2 gene display 60% smaller lesion size compared with normal mice in models of stroke (8). Application of PcTx1, a venom peptide that prevents ASIC1a activation, is similarly neuroprotective, even when administered hours after injury (8, 9). Thus, ASIC1a represents a novel pharmacological target for the prevention of neuronal death following stroke.Mammals have four genes encoding ASICs (accn1 to -4) that encode at least six different ASIC subunits (13, 10). Like all members of the DEG/ENaC family, individual ASIC subunits have two transmembrane regions separated by a large cysteine-rich extracellular region. Three ASIC subunits associate to form homomeric or heteromeric channels with distinct biophysical characteristics (1114). Specifically, ASIC1a homomeric channels activate at pH values much closer to neutral pH compared with ASIC2a homomeric channels. The high affinity proton sensitivity of ASIC1a plays a prominent role in acidosis-induced neuronal death, and modulators that alter the pH dose response of ASIC1a affect neuronal sensitivity to prolonged acidosis (8, 9, 15). For example, the neuroprotective venom peptide PcTx1 increases the proton sensitivity of the ASIC1a channel, allowing the channel to desensitize at neutral pH and become unresponsive to subsequent acidic shifts in pH (16, 17). The large extracellular region of ASIC1a is thought to be the site of proton/modulator interaction and governs the characteristics of channel gating (10, 11, 18). However, the exact molecular mechanisms defining ASIC1a activation and the protein domains that are responsible for the apparent proton sensitivity of ASIC1a remain unclear. Here, we used chimeras containing specific regions from both ASIC1a and ASIC2a to identify the specific protein regions that confer high affinity proton sensing, PcTx1 sensitivity, and calcium modulation to ASIC1a.  相似文献   

20.
Acid-sensing ion channels (ASICs) are neuronal Na+-conducting channels activated by extracellular acidification. ASICs are involved in pain sensation, expression of fear, and neurodegeneration after ischemic stroke. Functional ASICs are composed of three identical or homologous subunits, whose extracellular part has a handlike structure. Currently, it is unclear how protonation of residues in extracellular domains controls ASIC activity. Knowledge of these mechanisms would allow a rational development of drugs acting on ASICs. Protonation may induce conformational changes that control the position of the channel gate. We used voltage-clamp fluorometry with fluorophores attached to residues in different domains of ASIC1a to detect conformational changes. Comparison of the timing of fluorescence and current signals identified residues involved in movements that preceded desensitization and may therefore be associated with channel opening or early steps leading to desensitization. Other residues participated in movements intimately linked to desensitization and recovery from desensitization. Fluorescence signals of all mutants were detected at more alkaline pH than ionic currents. Their midpoint of pH dependence was close to that of steady-state desensitization, whereas the steepness of the pH fluorescence relationship was closer to that of current activation. A sequence of movements was observed upon acidification, and its backward movements during recovery from desensitization occurred in the reverse order, indicating that the individual steps are interdependent. Furthermore, the fluorescence signal of some labeled residues in the finger domain was strongly quenched by a Trp residue in the neighboring β-ball domain. Upon channel activation, their fluorescence intensity increased, indicating that the finger moved away from the β ball. This extensive analysis of activity-dependent conformational changes in ASICs sheds new light on the mechanisms by which protonation controls ASIC activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号