首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Darwen CW  John P 《Plant physiology》1989,89(2):658-663
Vacuoles isolated by a mechanical slicing method from developing tubers of Jerusalem artichoke (Helianthus tuberosus L.) contain activities of the two principal enzymes responsible for fructan synthesis: sucrose-sucrose fructosyl transferase and fructan-fructan fructosyl transferase. Both enzymes are associated with the vacuolar sap and not with the tonoplast. In vacuoles isolated from dormant tubers, the fructan-fructan fructosyl transferase activity remains in the vacuolar sap but the fructan exohydrolase activity is associated with the tonoplast. Fructan is hydrolysed by these vacuoles to fructose, which can be exported to the suspending medium. The localization of the enzymes of fructan metabolism in the vacuole has implications for the maintenance of fructan polymerisation.  相似文献   

2.
Sucrose (Suc):Suc 1-fructosyltransferase (1-SST) is the key enzyme in plant fructan biosynthesis, since it catalyzes de novo fructan synthesis from Suc. We have cloned 1-SST from onion (Allium cepa) by screening a cDNA library using acid invertase from tulip (Tulipa gesneriana) as a probe. Expression assays in tobacco (Nicotiana plumbaginifolia) protoplasts showed the formation of 1-kestose from Suc. In addition, an onion acid invertase clone was isolated from the same cDNA library. Protein extracts of tobacco protoplasts transformed with this clone showed extensive Suc-hydrolyzing activity. Conditions that induced fructan accumulation in onion leaves also induced 1-SST mRNA accumulation, whereas the acid invertase mRNA level decreased. Structurally different fructan molecules could be produced from Suc by a combined incubation of protein extract of protoplasts transformed with 1-SST and protein extract of protoplasts transformed with either the onion fructan:fructan 6G-fructosyltransferase or the barley Suc:fructan 6-fructosyltransferase.  相似文献   

3.
The exact subcellular location of sucrose synthase (UDP-d-glucose: d-fructose 2-α-d-glucosyltransferase, EC 2.4.1.13) in Helianthus tuberosus tubers was studied by comparison of its activity in protoplasts with that of vacuoles isolated from them. Assuming 100% of the β-N-acetylglucosaminidase activity to be of vacuolar origin, less than 5% of both the sucrose synthase activity and the extravacuolar marker NAD-malate dehydrogenase was detected in the vacuole preparations. Sucrose synthase is therefore an extravacuolar enzyme. Its role in the inulin metabolism of H. tuberosus is discussed.  相似文献   

4.
植物果聚糖合成酶基因克隆及特性分析   总被引:2,自引:0,他引:2  
果聚糖(fructan)是蔗糖来源的果糖多聚体,果聚糖的类型常因聚合度的多寡、分支结构有无、相邻果糖基成键差异及葡萄糖位置不同而多种多样。果聚糖不仅是植物储存非结构性碳水化合物的形式之一,而且在干旱、低温等非生物胁迫中具有保护植物细胞免受伤害的作用。果聚糖作为一种益生素,对人体健康具有保健作用,有效减少或避免结肠癌、心血管疾病及骨质疏松等发病机率。本文就果聚糖的存在形式、生物合成代谢途径、果聚糖合成酶(fructan biosynthetic enzymes, FBEs)基因的克隆和转化等研究做一介绍,并对植物中FBEs结构特点进行了分析,同时对小麦中FBEs基因的拷贝数、染色体定位及亚细胞定位等研究进行了商榷,为从更多植物中分离FBEs基因,研究FBEs基因的作用方式和表达特性,以及利用转基因技术提高重要作物抗逆性奠定基础。  相似文献   

5.
Fructan: fructan fructosyl transferase (FFT), one of the enzymesinvolved in the synthesis of ß-2,1 linked fructosepolymers has been purified 205-fold from tubers of Helianthustuberosus harvested in the accumulation phase. The molecularweight of the native as well as the SDS-denatured protein isapproximately 70 kDa. On IEF, the protein was separated intofive molecular species with pl values between pH 4.5–5.0.The optimum pH for fructosyl transfer activity was between 5.5–7.0.Temperature optimum was in the range of 25-35° C; the Q10value between 25 and 5° C was 1.14. FTT catalysed the self-transferof fructosyl groups with GF2, GF3, GF4 or GF5 as substrate andacceptor. The rate of elf-transfer with both GF2 and GF3 increasedlinearly with substrate concentration up to 100 mol m–3and was still not saturated at 600 and 300 mol m–3, respectively.FFT was unable to hydrolyse GF or to catalyse the self-transferwith GF but could mediate the transfer of fructosyl units frominulin on to GF. Key words: Fructan: fructan fructosyl transferase, Helianthus tuberosus, Jerusalem artichoke, purification, kinetics  相似文献   

6.
7.
Fructans are the major storage carbohydrate in vegetative tissues of wheat (Triticum aestivum L.). Fructan:fructan fructosyl transferase (FFT) catalyzes fructosyl transfer between fructan molecules to elongate the fructan chain. The objective of this research was to isolate this activity in wheat. Wheat (cv Caldwell) plants grown at 25°C for 3 weeks were transferred to 10°C to induce fructan synthesis. From the leaf blades kept at 10°C for 4 days, fructosyl transferase activity was purified using salt precipitation and a series of chromatographic procedures including size exclusion, anion-exchange, and affinity chromatography. The transferase activity was free from invertase and other fructan-metabolizing activities. Fructosyl transferase had a broad pH spectrum with a peak activity at 6.5. The temperature optimum was 30°C. The activity was specific for fructosyl transfer from β(2→1)-linked 1-kestose or fructan to sucrose and β(2→1) fructosyl transfer to other fructans (1-FFT). Fructosyl transfer from oligofructans to sucrose was most efficient when 1-kestose was used as donor molecule and declined as the degree of polymerization of the donor increased from 3 to 5. 1-FFT catalyzed the in vitro synthesis of inulin tetra- and penta-saccharides from 1-kestose; however, formation of the tetrasaccharide was greatly reduced at high sucrose concentration. 6-Kestose could not act as donor molecule, but could accept a fructosyl moiety from 1-kestose to produce bifurcose and a tetrasaccharide having a β(2→1) fructose attached to the terminal fructose of 6-kestose. The role of this FFT activity in the synthesis of fructan in wheat is discussed.  相似文献   

8.
Cytochrome P-450 is not self-sufficient for the catalysis ofmonooxygenase reaction but requires NADPH and NADPH-cytochromeP-450 (c) reductase. The activity of NADPH-cyto-chrome P-450reductase was strongly enhanced by wounding and aging in Jerusalemartichoke (Helianthus tuberosus L.) tuber tissues. This stimulationwas correlated with the synthesis of the enzyme protein basedon i) quantitation of the reductase protein by Western blotting,ii) incorporation of [35S]methionine into the immunoprecipitableenzyme and iii) an increase in translatable mRNA for the reductasein a cell free system. (Received April 9, 1990; Accepted September 12, 1990)  相似文献   

9.
The acid-soluble nucleotides were extracted from the tubers of Jerusalem artichoke with percbloric acid, and separated and purified by means of adsorption on and elution from active charcoal, repeated chromatography on columns of Dowex I (Cl-), followed by paper chromatography. The following nucleotides have been characterized and/or identified: 5′-AMP, 3′-AMP, ADP, ATP, 5′-GMP, 2′-GMP, 3′-GMP, 2′,3′-cyclic GMP, GDP, GTP, 5′-UMP, UDP, UTP, NADP, UDP-glucose, UDP-galactose, UDP-fructose, UDP-N-acetylhexosamine and GDP-mannose.** Neither cytosine ribonucleotides nor deoxyribonucleotides have been detected. The significance of these observations is discussed.  相似文献   

10.
The functional and thermodynamic characteristics of the ubiquinolcytochrome (Cyt) c oxidoreductase in a Cyt b/c1-enriched fraction (defined S-1) isolated from Jerusalem artichoke mitochondria (JAM) (Helianthus tuberosus), have been analyzed. Fraction S-1, obtained through deoxycholate-KCl fractionation procedure, contained one Cyt of c type (formally c1 with Em7.0 of +240 millivolts), two b type Cyt with Em7.0 values of +100 and −25 millivolts, ferredoxin-like centers presumably linked to succinic- and NADH-dehydrogenases, and a Rieske-type iron sulfur center (gy = 1.89). The ubiquinol-dependent Cyt c reduction by fraction S-1 showed sensitivity to antimycin A, myxothiazol, and n-2-hepthyl-1-hydroxyquinoline N-oxide with I50 of 12 nanomolar, 30 nanomolar, and 0.1 micromolar, respectively. Oxidation-induced extra b type reduction, a widespread phenomenon of bacterial and mitochondrial respiratory systems, has also been observed in both intact mitochondria and S-1 fraction. The data seem to blur previous experiments in which both spectral and functional differences between higher plant and mammalian mitochondria have been underlined.  相似文献   

11.
Plasmalemma ATPase from Jerusalem artichoke tubers was studiedin relation to the dormancy of tubers. After partial purification,one peptide of 110 kDa appeared on SDS PAGE electrophoresisfrom dormant and non-dormant materials. ATPase specific activitywas twice higher on dormant material in the crude and solubilizedfractions, but was the same in both materials after partialpurification. Immunolabeling of this enzyme was made using aspecific antibody raised against the C terminal portion of theH+-ATPase from Arabidopsis thaliana. Immunolabeling was morepronounced in dormant material, in vitro and in situ. Severalworks had shown that the C terminal part of the enzyme couldbe involved in its regulation. The results presented are discussedin relation to the hypothesis according to which an internaleffector could modulated the plasmalemma ATPase activity, duringdormancy breaking. (Received October 25, 1993; Accepted September 6, 1994)  相似文献   

12.
13.
The nucleus and nucleolus have been examined by phase contrastmicroscopy of isolated fixed nuclei from synchronously dividingcells of Helianthus tuberosus L. tuber explants grown in nutrientmedium on filter paper. The volumes of nuclei and nucleoli werecomputed from their areas and perimeters obtained by digitizingimages projected from film. The nuclei did not show a pattern of growth related to the Sphase but enlarged at times of both de-differentiation and differentiation.There was also rapid post-mitotic nuclear enlargement. The sizeattained by nuclei in the three successive divisions followingcell activation decreased progressively, but started to riseagain at the time of cell differentiation. The changes are discussed in relation to nuclear size regulation,the nuclear matrix and hypotheses relating nuclear growth toDNA, protein and water in the processes of de-differentiation,mitosis and differentiation. Nucleoli showed a clear fusion and growth cycle. The patternof fusion can be used to identify the position of a sample ofcells, though not any particular cell, within the cycle. Nucleolargrowth was different in the succeeding cell cycles that wereinduced in the de-differentiating tissue. Nucleolar enlargementwas slow in the first cycle and continued until mitosis. Therewas rapid nucleolar growth in the second cycle and none in latercycles until the time of cell differentiation. Nucleolar changes are discussed in relation to rRNA gene dosage,replication and polymerase availability. Helianthus tuberosus L. Jerusalem artichoke, isolated-nuclei, tissue culture, cell cycle, nucleolar cycle  相似文献   

14.
Excision of developing potato (Solanum tuberosum L.) tubers from the mother plant, followed by storage at 10°C, resulted in a rapid, substantial decrease in sucrose synthase activity and considerable increases in hexose content and acid invertase activity. A comparison of the response of three genotypes, known to accumulate different quantities of hexoses in storage, showed that both sucrose synthase activity and the extent to which activity declined following excision were similar in all cases. However, there was significant genotypic variation in the extent to which acid invertase activity developed, with tubers accumulating the highest hexose content also developing the highest extractable activity of invertase. Similar effects were found in nondetached tubers when growing plants were maintained in total darkness for a prolonged period. Furthermore, supplying sucrose to detached tubers through the cut stolon surface prevented the decline in sucrose synthase activity. Maltose proved to be ineffective. Western blots using antibodies raised against maize sucrose synthase showed that the decline in sucrose synthase activity was associated with the loss of protein rather than the effect of endogenous inhibitors. Although there were indications that maintaining a flux of sucrose into isolated tubers could prevent the increase in acid invertase activity, the results were not conclusive.  相似文献   

15.
Most of the dry weight of sprouting Jerusalem artichoke tuberswas lost during the first few weeks of growth of the new shoots;at least 80 per cent. of this loss was accounted for by disappearanceof polymerized fructose. It was demonstrated that much, if notall, of this material was translocated to the growing shoots,presumably in the form of sucrose. Depolymerization of fructoseresidues occurred during this process, and individual changesin the mono-, oligo-, and poly-saccharide fractions were consistentwith the hypothesis that a specific hydrolytic enzyme, knownto occur in tuber extracts, is involved.  相似文献   

16.
17.
Nucleolar and nuclear envelope size changes in cultured explantsof H. tuberosus L. were studied prior to the first mitotic division.Using the technique of nuclear isolation to facilitate measurementsresults were obtained showing an almost immediate increase innuclear envelope surface area, while nucleolar volume showedno appreciable increase until 4 h after excision. The sharpincrease in nucleolar volume shown at this time reaches a maximumat 18 h which is maintained until mitosis occurs. The frequencyof nuclear pores remains constant. These results are discussedin the light of previous work on levels of RNA throughout theactivation process.  相似文献   

18.
19.
Discs cut from Jerusalem artichoke (Helianthus tuberosus) tubertissue were shaken in distilled water at 25?C (termed ageing)for periods of 0, 3, and 24 h when samples were prepared forelectron microscopy. Tissue samples were fixed with 3 per centbuffered glutaraldehyde followed by osmium tetroxide. The ultrastructureof the nucleolus changes significantly with ageing. By 3 h aregion which we identify as nucleolar-organizing chromosomeis beginning to move from an external position on the nucleolusinto the fibrillar region. By 24 h this chromosomal region hasbecome dispersed as small areas within the fibrillar zone. Atthe same time the nucleolus develops a large granular zone.These changes are discussed with reference to the known increasein RNA synthesis during the ageing process.  相似文献   

20.
Sucrose synthase (EC 2.4.1.13 [EC] ) was purified from peach fruit(Prunus persica) to a single band of protein on SDS-PAGE byammonium sulfate fractionation, DEAE-cellulose (DE-52) chromatography,Sepharose CL-6B gel filtration, PBA-60 affinity chromatographyand Sephadex G-200 gel filtration. The molecular weight wasestimated to be 360,000 by gel filtration. The enzyme was foundto be a tetramer of identical 87-kDa subunits. The maximum activityfor the synthesis and cleavage of sucrose was observed at pH8.5 and pH 7.0, respectively. The enzymatic reaction followedtypical Michaelis-Menten kinetics in both directions, with thefollowing parameters: Km(fructose), 4.8 mmM; Km(UDPglucose),0.033 mM; Km(sucrose), 62.5 mM; Km(UDP), 0.080 mM. Other properties,such as substrate specificity and the effects of divalent cations,were also investigated. The relationship between the enzymeand the accumulation of sucrose in peach fruit is discussed. Present address: Laboratory of Horticulture, Faculty of Agriculture,Nagoya University, Chikusa, Nagoya 464, Japan. (Received May 2, 1988; Accepted September 14, 1988)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号