首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell adhesion-dependent signaling implicates cytoplasmic proteins interacting with the intracellular tails of integrins. Among those, the integrin cytoplasmic domain-associated protein 1alpha (ICAP-1alpha) has been shown to interact specifically with the beta(1) integrin cytoplasmic domain. Although it is likely that this protein plays an important role in controlling cell adhesion and migration, little is known about its actual function. To search for potential ICAP-1alpha-binding proteins, we used a yeast two-hybrid screen and identified the human metastatic suppressor protein nm23-H2 as a new partner of ICAP-1alpha. This direct interaction was confirmed in vitro, using purified recombinant ICAP-1alpha and nm23-H2, and by co-immunoprecipitation from CHO cell lysates over-expressing ICAP-1alpha. The physiological relevance of this interaction is provided by confocal fluorescence microscopy, which shows that ICAP-1alpha and nm23-H2 are co-localized in lamellipodia during the early stages of cell spreading. These adhesion sites are enriched in occupied beta(1) integrins and precede the formation of focal adhesions devoid of ICAP-1alpha and nm23-H2, indicating the dynamic segregation of components of matrix adhesions. This peripheral staining of ICAP-1alpha and nm23-H2 is only observed in cells spreading on fibronectin and collagen and is absent in cells spreading on poly-l-lysine, vitronectin, or laminin. This is consistent with the fact that targeting of both ICAP-1alpha and nm23-H2 to the cell periphery is dependent on beta(1) integrin engagement rather than being a consequence of cell adhesion. This finding represents the first evidence that the tumor suppressor nm23-H2 could act on beta(1) integrin-mediated cell adhesion by interacting with one of the integrin partners, ICAP-1alpha.  相似文献   

2.
The Nm23-H1/nucleoside diphosphate (NDP) kinase A is a metastasis suppressor, besides its enzymatic activity. The mutant S120G has been found in high-grade neuroblastomas. The mutant protein, once denatured in urea, is unable to refold in vitro. A size-exclusion chromatography analysis of the folding/association pathway showed that recombinant wild-type and S120G mutant human Nm23-H1/NDP kinase A unfold and refold passing through a molten globule state while typical hexameric NDP kinases unfold without dissociated species and refold through a native monomeric intermediate. A survey of the recent literature showed that several proteins involved in cancer, and their mutants, are marginally stable, like the wild-type Nm23-H1/NDP kinase A, or are misfolded, like its S120G mutant. We therefore suggest that the low thermodynamic stability and the folding intermediate of the Nm23-H1/NDP kinase A may be necessary for its regulatory properties.  相似文献   

3.
Nucleoside diphosphate kinases (NDP kinases) are enzymes known to be conserved throughout evolution and have been shown to be involved in various biological events, in addition to the "housekeeping" phosphotransferase activity. We present the molecular cloning of a novel human NDP kinase gene, termed Nm23-H6. Nm23-H6 gene has been mapped at chromosome 3p21.3 and is highly expressed in heart, placenta, skeletal muscle, and some of the cancer cell lines. Recombinant Nm23-H6 protein has been identified to exhibit functional NDP kinase activity. Immunolocalization studies showed that both endogenous and inducibly expressed Nm23-H6 proteins were present as short, filament-like, perinuclear radical arrays and that they colocalized with mitochondria. Cell fractionation study also demonstrated the presence of Nm23-H6 protein in a mitochondria-rich fraction. Moreover, induction of overexpression of Nm23-H6 in SAOS2 cells, using the Cre-loxP gene activation system, resulted in growth suppression and generation of multinucleated cells. Flow cytometric analysis also demonstrated that the proportion of cells with more than 4N DNA content increased to 28.1% after induction of Nm23-H6, coinciding with the appearance of multinucleated cells. These observations suggest that Nm23-H6, a new member of the NDP kinase family, resides in mitochondria and plays a role in regulation of cell growth and cell cycle progression.  相似文献   

4.
Focal adhesion turnover during cell migration is an integrated cyclic process requiring tight regulation of integrin function. Interaction of integrin with its ligand depends on its activation state, which is regulated by the direct recruitment of proteins onto the β integrin chain cytoplasmic domain. We previously reported that ICAP-1α, a specific cytoplasmic partner of β1A integrins, limits both talin and kindlin interaction with β1 integrin, thereby restraining focal adhesion assembly. Here we provide evidence that the calcium and calmodulin-dependent serine/threonine protein kinase type II (CaMKII) is an important regulator of ICAP-1α for controlling focal adhesion dynamics. CaMKII directly phosphorylates ICAP-1α and disrupts an intramolecular interaction between the N- and the C-terminal domains of ICAP-1α, unmasking the PTB domain, thereby permitting ICAP-1α binding onto the β1 integrin tail. ICAP-1α direct interaction with the β1 integrin tail and the modulation of β1 integrin affinity state are required for down-regulating focal adhesion assembly. Our results point to a molecular mechanism for the phosphorylation-dependent control of ICAP-1α function by CaMKII, allowing the dynamic control of β1 integrin activation and cell adhesion.  相似文献   

5.
Cell migration is an integrated process requiring the continuous coordinated assembly and disassembly of adhesion structures. How cells orchestrate adhesion turnover is only partially understood. We provide evidence for a novel mechanistic insight into focal adhesion (FA) dynamics by demonstrating that integrin cytoplasmic domain-associated protein 1 (ICAP-1) slows down FA assembly. Live cell imaging, which was performed in both Icap-1-deficient mouse embryonic fibroblasts and cells expressing active beta(1) integrin, shows that the integrin high affinity state favored by talin is antagonistically controlled by ICAP-1. This affinity switch results in modulation in the speed of FA assembly and, consequently, of cell spreading and migration. Unexpectedly, the ICAP-1-dependent decrease in integrin affinity allows cell sensing of matrix surface density, suggesting that integrin conformational changes are important in mechanotransduction. Our results clarify the function of ICAP-1 in cell adhesion and highlight the central role it plays in the cell's integrated response to the extracellular microenvironment.  相似文献   

6.
Integrin Cytoplasmic domain-Associated Protein-1 (ICAP-1) binds specifically to the beta1 integrin subunit cytoplasmic domain. We observed that RNAi-induced knockdown of ICAP-1 reduced migration of C2C12 myoblasts on the beta1 integrin ligand laminin and that overexpression of ICAP-1 increased this migration. In contrast, migration on the beta3 integrin ligand vitronectin was not affected. ICAP-1 knockdown also greatly diminished migration of microvascular endothelial cells on collagen. The number of central focal adhesions in C2C12 cells on laminin was reduced by ICAP-1 knockdown and increased by ICAP-1 overexpression. Previously, we demonstrated that ICAP-1 binds to the ROCK-I kinase and translocates ROCK-I to the plasma membrane. We show here that the ROCK kinase inhibitor Y27362 reduces migration on laminin and causes a loss of central focal adhesions, similarly as ICAP-1 knockdown. ICAP-1 and ROCK were co-immune-precipitated from C2C12 cells, and in cells that overexpressed ICAP-1, YFP-ROCK was translocated to membrane ruffles. These results indicate that ICAP-1 regulates beta1 integrin-dependent cell migration by affecting the pattern of focal adhesion formation. This is likely due to ICAP-1-induced translocation of ROCK to beta1 integrin attachment sites.  相似文献   

7.
8.
We demonstrate here the catalytic activity and subcellular localization of the Nm23-H4 protein, product of nm23-H4, a new member of the human nm23/nucleoside diphosphate (NDP) kinase gene family (Milon, L., Rousseau-Merck, M., Munier, A., Erent, M., Lascu, I., Capeau, J., and Lacombe, M. L. (1997) Hum. Genet. 99, 550-557). Nm3-H4 was synthesized in escherichia coli as the full-length protein and as a truncated form missing the N-terminal extension characteristic of mitochondrial targeting. The truncated form possesses NDP kinase activity, whereas the full-length protein is inactive, suggesting that the extension prevents enzyme folding and/or activity. X-ray crystallographic analysis was performed on active truncated Nm23-H4. Like other eukaryotic NDP kinases, it is a hexamer. Nm23-H4 naturally possesses a serine residue at position 129, equivalent to the K-pn mutation of the Drosophila NDP kinase. The x-ray structure shows that the presence of Ser(129) has local structural effects that weaken subunit interactions. Site-directed mutagenesis shows that the serine is responsible for the lability of Nm23-H4 to heat and urea treatment, because the S129P mutant is greatly stabilized. Examination of human embryonic kidney 293 cells transfected with green fluorescent protein fusions by confocal microscopy shows a specific mitochondrial localization of Nm23-H4 that was also demonstrated by Western blot analysis of subcellular fractions of these cells. Import into mitochondria is accompanied by cleavage of the N-terminal extension that results in NDP kinase activity. Submitochondrial fractionation indicates that Nm23-H4 is associated with mitochondrial membranes, possibly to the contact sites between the outer and inner membranes.  相似文献   

9.
10.
In order to identify Nm23-H1's structural motifs influencing its metastasis-inhibitory activity, we transfected DU 145 human prostate carcinoma cells with the expression vector encoding the Nm23-H1 protein with mutations at the following amino acids: serine-44, a phosphorylation site; proline-96, a site corresponding to the k-pn mutation that causes developmental defects in Drosophila; and serine-120, a site of mutation in human neuroblastoma and phosphorylation. Significant decrease in colonization in soft agar and invasiveness of DU 145 cells was observed in the wild type nm23-H1 transfectants, and also in the serine-44 and serine-120 to alanine mutant nm23-H1-transfected cell lines. However, the k-pn type proline-96 to serine (P96S) and neuroblastoma type serine-120 to glycine (S120G) mutations of Nm23-H1 abrogated its inhibitory activity on colonization and invasion. Meanwhile, all of the recombinant mutant Nm23-H1 proteins produced in Escherichia coli exhibited NDP kinase activity levels at the wild type protein, although the P96S and S120G mutant proteins exhibited decreased histidine protein kinase activity and autophosphorylation level, respectively. Interestingly, only two of the mutant recombinant Nm23-H1 proteins examined, P96S and S120G, exhibited reduced hexameric and increased dimeric oligomerization relative to the wild type. These correlative data suggest that the metastasis-suppressing activity of Nm23-H1 may depend on its oligomeric structure, but not on its NDP kinase activity.  相似文献   

11.
Nucleoside diphosphate (NDP) kinases, responsible for the synthesis of nucleoside triphosphates and produced by the nm23 genes, are involved in numerous regulatory processes associated with proliferation, development, and differentiation. Their possible role in providing the GTP/ATP required for sperm function is unknown. Testis biopsies and ejaculated sperm were examined by immunohistochemical and immunofluorescence microscopy using specific antibodies raised against Nm23-H5, specifically expressed in testis germinal cells and the ubiquitous NDP kinases A to D. Nm23-H5 was present in sperm extract, together with the ubiquitous A and B NDP kinases (but not the C and D isoforms) as shown by Western blotting. Nm23-H5 was located in the flagella of spermatids and spermatozoa, adjacent to the central pair and outer doublets of axonemal microtubules. High levels of NDP kinases A and B were observed at specific locations in postmeiotic germinal cells. NDP kinase A was transiently located in round spermatid nuclei and became asymmetrically distributed in the cytoplasm at the nuclear basal pole of elongating spermatids. The distribution of NDP kinase B was reminiscent of the microtubular structure of the manchette. In ejaculated spermatozoa, the proteins presented specific locations in the head and flagella. Nm23/NDP kinase isoforms may have specific functions in the phosphotransfer network involved in spermiogenesis and flagellar movement.  相似文献   

12.
Using two-hybrid screening, we isolated the integrin cytoplasmic domain-associated protein (ICAP-1), an interactor for the COOH terminal region of the beta1A integrin cytoplasmic domain. To investigate the role of ICAP-1 in integrin-mediated adhesive function, we expressed the full-length molecule in NIH3T3 cells. ICAP-1 expression strongly prevents NIH3T3 cell spreading on extracellular matrix. This inhibition is transient and can be counteracted by coexpression of a constitutively activated mutant of Cdc42, suggesting that ICAP-1 acts upstream of this GTPase. In addition, we found that ICAP-1 binds both to Cdc42 and Rac1 in vitro, and its expression markedly inhibits activation of these GTPases during integrin-mediated cell adhesion to fibronectin as detected by PAK binding assay. In the attempt to define the molecular mechanism of this inhibition, we show that ICAP-1 reduces both the intrinsic and the exchange factor-induced dissociation of GDP from Cdc42; moreover, purified ICAP-1 displaces this GTPase from cellular membranes. Together, these data show for the first time that ICAP-1 regulates Rho family GTPases during integrin-mediated cell matrix adhesion, acting as guanine dissociation inhibitor.  相似文献   

13.
ARF6-regulated endocytosis of E-cadherin is essential during the disassembly of adherens junctions in epithelial cells. Here, we show that activation of ARF6 promotes clathrin-dependent internalization of E-cadherin and caveolae at the basolateral cell surface. Furthermore, we demonstrate that ARF6-GTP, a constitutively activate form of ARF6, interacts with and recruits Nm23-H1, a nucleoside diphosphate (NDP) kinase that provides a source of GTP for dynamin-dependent fission of coated vesicles during endocytosis. Finally, we show that ARF6-mediated recruitment of Nm-23-H1 to cell junctions is accompanied by a decrease in the cellular levels of Rac1-GTP, consistent with previous findings that Nm23-H1 down-regulates activation of Rac1. These studies provide a molecular basis for ARF6 function in polarized epithelia during adherens junction disassembly.  相似文献   

14.
A cDNA clone (TAB2) encoding a nucleoside diphosphate (NDP) kinase has been isolated from a tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) cDNA library. The clone is 590 bp long and exhibits a high degree of sequence identity with spinach NDP kinases I and II, Pisum sativum NDP kinase I, Arabidopsis thaliana NDP kinase, Drosophila melanogaster NDP kinase, Dictyostelium discoideum NDP kinase and human Nm 23-H1 and Nm23-H2. Northern analysis has revealed that the mRNA encoded by TAB2 is up-regulated in both leaf and stem tissue in response to wounding. The increase is apparent within 1 h of wounding and is not further elevated by application of ethylene. Southern blot analysis indicates that TAB2 is a member of a small gene family.  相似文献   

15.
16.
17.
DR-nm23 belongs to a gene family which includes nm23-H1, originally identified as a candidate metastasis suppressor gene. Nm23 genes are expressed in different tumor types where their levels have been alternatively associated with reduced or increased metastatic potential. Nm23-H1, -H2, DR-nm23 and nm23-H4 all possess NDP kinase activity. Overexpression of DR-nm23 inhibits differentiation and promotes apoptosis in hematopoietic cells. By contrast, it induces morphological and biochemical changes associated with neural differentiation in neuroblastoma cells. In this study, we show that mutations in the catalytic domain and in the serine 61 phosphorylation site, possibly required for protein-protein interactions, impair the ability of DR-nm23 to induce neural differentiation. Moreover, neuroblastoma cells overexpressing wild-type or mutant DR-nm23 are less sensitive to apoptosis triggered by serum withdrawal. By subcellular fractionation, wild-type and mutant DR-nm23 localize in the cytoplasm and prevalently in the mitochondrial fraction. In co-immunoprecipitation experiments, wild-type DR-nm23 binds other members of nm23 family, but mutations in the catalytic and in the RGD domains and in serine 61 inhibit the formation of hetero-multimers. Thus, the integrity of the NDP kinase activity and the presence of a serine residue in position 61 seem essential for the ability of DR-nm23 to trigger differentiation and to bind other Nm23 proteins, but not for the anti-apoptotic effect in neuroblastoma cells. These studies underline the tissue specificity of the biological effects induced by DR-nm23 expression.  相似文献   

18.
19.
Basic and translational advances in cancer metastasis: Nm23   总被引:14,自引:0,他引:14  
Cancer metastasis is a significant contributor to breast cancer patient morbidity and mortality. To develop new anti-metastatic therapies, we need to understand the biological and biochemical mechanisms of metastasis. Toward these efforts, we and others have studied metastasis suppressor genes, which halt metastasis in vivo without affecting primary tumor growth. The first metastasis suppressor gene confirmed was nm23, also known as NDP kinase. Using in vitro assays, nm23 overexpression resulted in reduced anchorage-independent colonization in response to TGF-, reduced invasion and motility in response to multiple factors, and increased differentiation. We hypothesize that the mechanism of action of Nm23 in metastasis suppression involves diminished signal transduction, downstream of a particular receptor. We hypothesize that a histidine protein kinase activity of Nm23 underlies its suppression of metastasis, and identify candidate substrates. This review also discusses therapeutic options on the basis of reexpression of metastasis suppressors.  相似文献   

20.
Nm23/Nucleoside Diphosphate Kinase in Human Cancers   总被引:21,自引:0,他引:21  
Tumor metastasis is the leading cause of death in cancer patients. From a series of tumorcohort studies, low expression of Nm23/NDP kinase has been correlated with poor patientprognosis and survival, lymph node infiltration, and histopathological indicators of highmetastatic potential in a number of cancer types, including mammary and ovarian carcinomas andmelanoma. In other tumor types, no correlation has been established. Transfection ofNm23/NDP kinase cDNA into highly metastatic breast, melanoma, prostrate and squamous cellcarcinomas, and colon adenocarcinoma cells significantly reduced the metastatic competencyof the cells in vivo. In culture, cell motility, invasion, and colonization were inhibited, whereastumorigenicity and cellular proliferation were not affected, indicating that Nm23/NDP kinaseacts as a metastasis suppressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号