首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An expressed sequence tag homologous to cheA was previously isolated by random sequencing of Thermotoga maritima cDNA clones (C. W. Kim, P. Markiewicz, J. J. Lee, C. F. Schierle, and J. H. Miller, J. Mol. Biol. 231: 960-981, 1993). Oligonucleotides complementary to this sequence tag were synthesized and used to identify a clone from a T. maritima lambda library by using PCR. Two partially overlapping restriction fragments were subcloned from the lambda clone and sequenced. The resulting 5,251-bp sequence contained five open reading frames, including cheA, cheW, and cheY. In addition to the chemotaxis genes, the fragment also encodes a putative protein isoaspartyl methyltransferase and an open reading frame of unknown function. Both the cheW and cheY genes were individually cloned into inducible Escherichia coli expression vectors. Upon induction, both proteins were synthesized at high levels. T. maritima CheW and CheY were both soluble and were easily purified from the bulk of the endogenous E. coli protein by heat treatment at 80 degrees C for 10 min. CheY prepared in this way was shown to be active by the demonstration of Mg(2+)-dependent autophosphorylation with [32P]acetyl phosphate. In E. coli, CheW mediates the physical coupling of the receptors to the kinase CheA. The availability of a thermostable homolog of CheW opens the possibility of structural characterization of this small coupling protein, which is among the least well characterized proteins in the bacterial chemotaxis signal transduction pathway.  相似文献   

2.
Acetohydroxyacid synthase (AHAS) is the key enzyme in branched chain amino acid biosynthesis pathway. The enzyme activity and properties of a highly thermostable AHAS from the hyperthermophilic bacterium Thermotoga maritima is being reported. The catalytic and regulatory subunits of AHAS from T. maritima were over-expressed in Escherichia coli. The recombinant subunits were purified using a simplified procedure including a heat-treatment step followed by chromatography. A discontinuous colorimetric assay method was optimized and used to determine the kinetic parameters. AHAS activity was determined to be present in several Thermotogales including T. maritima. The catalytic subunit of T. maritima AHAS was purified approximately 30-fold, with an AHAS activity of approximately 160±27 U/mg and native molecular mass of 156±6 kDa. The regulatory subunit was purified to homogeneity and showed no catalytic activity as expected. The optimum pH and temperature for AHAS activity were 7.0 and 85 °C, respectively. The apparent Km and Vmax for pyruvate were 16.4±2 mM and 246±7 U/mg, respectively. Reconstitution of the catalytic and regulatory subunits led to increased AHAS activity. This is the first report on characterization of an isoleucine, leucine, and valine operon (ilv operon) enzyme from a hyperthermophilic microorganism and may contribute to our understanding of the physiological pathways in Thermotogales. The enzyme represents the most active and thermostable AHAS reported so far.  相似文献   

3.
Cold-shock proteins (Csps) are a subgroup of the cold-induced proteins preferentially expressed in bacteria and other organisms on reduction of the growth temperature below the physiological temperature. They are related to the cold-shock domain found in eukaryotes and are some of the most conserved proteins known. Their exact function is still not known, but translational regulation, possibly via RNA chaperoning, has been discussed. Here we present the structure of a hyperthermophilic member of the Csp family. The NMR solution structure of TmCsp from Thermotoga maritima, the hyperthermophilic member of this class of proteins, was solved on the basis of 1015 conformational constraints. It contains five beta strands combined in two antiparallel beta sheets making up a beta barrel structure, in which beta strands 1-4 are arranged in a Greek-key topology. The side chain of R2, which is exclusively found in thermophilic members of the Csp family, probably participates in a peripheral ion cluster involving residues D20, R2, E47 and K63, suggesting that the thermostability of TmCsp is based on the peripheral ion cluster around the side chain of R2.  相似文献   

4.
Abstract A ferredoxin has been purified from one of the most ancient and the most thermophilic bacteria known, Thermotoga maritima , which grous up to 90°C. The reduced protein ( M r approx. 6300) contains a single S = 1 2 [4Fe 4S]1+ cluster with complete cysteinyl ligation, and was unaffected after incubation at 95°C for 12 h. It functioned as an electron carrier for T. maritima pyruvate oxidoreductase. Remarkably, the properties and amino acid sequence of this hyperthermophilic bacterial protein are much more similar to those of ferredoxins from hyperthermophilic archaea, rather than ferredoxins from mesophilic and moderately thermophilic bacteria.  相似文献   

5.
The hyperthermophilic bacterium Thermotoga maritima, which grows at up to 90°C, contains an L-glutamate dehydrogenase (GDH). Activity of this enzyme could be detected in T. maritima crude extracts, and appeared to be associated with a 47-kDa protein which cross-reacted with antibodies against purified GDH from the hyperthermophilic archaeon Pyrococcus woesei. The single-copy T. maritima gdh gene was cloned by complementation in a glutamate auxotrophic Escherichia coli strain. The nucleotide sequence of the gdh gene predicts a 416-residue protein with a calculated molecular weight of 45852. The gdh gene was inserted in an expression vector and expressed in E. coli as an active enzyme. The T. maritima GDH was purified to homogeneity. The NH2-terminal sequence of the purified enzyme was PEKSLYEMAVEQ, which is identical to positions 2–13 of the peptide sequence derived from the gdh gene. The purified native enzyme has a size of 265 kDa and a subunit size of 47 kDa, indicating that GDH is a homohexamer. Maximum activity of the enzyme was measured at 75°C and the pH optima are 8.3 and 8.8 for the anabolic and catabolic reaction, respectively. The enzyme was found to be very stable at 80°C, but appeared to lose activity quickly at higher temperatures. The T. maritima GDH shows the highest rate of activity with NADH (V max of 172U/mg protein), but also utilizes NADPH (V max of 12U/mg protein). Sequence comparisons showed that the T. maritima GDH is a member of the family II of hexameric GDHs which includes all the GDHs isolated so far from hyperthermophiles. Remarkably, phylogenetic analysis positions all these hyperthermophilic GDHs in the middle of the GDH family II tree, with the bacterial T. maritima GDH located between that of halophilic and thermophilic euryarchaeota. Received: 15 July 1996 / Accepted: 12 October 1996  相似文献   

6.
T Dams  R Jaenicke 《Biochemistry》1999,38(28):9169-9178
Dihydrofolate reductase (DHFR) has been a well-established model system for protein folding. The enzyme DHFR from the hyperthermophilic bacterium Thermotoga maritima (TmDHFR) displays distinct adaptations toward high temperatures at the level of both structure and stability. The enzyme represents an extremely stable dimer; no isolated structured monomers could be detected in equilibrium or during unfolding. The equilibrium unfolding strictly follows the two-state model for a dimer (N(2) right harpoon over left harpoon 2U), with a free energy of stabilization of DeltaG = -142 +/- 10 kJ/mol at 15 degrees C. The two-state model is applicable over the whole temperature range (5-70 degrees C), yielding a DeltaG vs T profile with maximum stability at around 35 degrees C. There is no flattening of the stability profile. Instead, the enhanced thermostability is characterized by shifts toward higher overall stability and higher temperature of maximum stability. TmDHFR unfolds in a highly cooperative manner via a nativelike transition state without intermediates. The unfolding reaction is much slower (ca. 10(8) times) compared to DHFR from Escherichia coli (EcDHFR). In contrast to EcDHFR, no evidence for heterogeneity of the native state is detectable. Refolding proceeds via at least two intermediates and a burst-phase of rather low amplitude. Reassociation of monomeric intermediates is not rate-limiting on the folding pathway due to the high association constant of the dimer.  相似文献   

7.
Inositol monophosphatase (I-1-Pase) catalyzes the dephosphorylation step in the de novo biosynthetic pathway of inositol and is crucial for all inositol-dependent processes. An extremely heat-stable tetrameric form of I-1-Pase from the hyperthermophilic bacterium Thermotoga maritima was overexpressed in Escherichia coli. In addition to its different quaternary structure (all other known I-1-Pases are dimers), this enzyme displayed a 20-fold higher rate of hydrolysis of D-inositol 1-phosphate than of the L isomer. The homogeneous recombinant T. maritima I-1-Pase (containing 256 amino acids with a subunit molecular mass of 28 kDa) possessed an unusually high V(max) (442 micromol min(-1) mg(-1)) that was much higher than the V(max) of the same enzyme from another hyperthermophile, Methanococcus jannaschii. Although T. maritima is a eubacterium, its I-1-Pase is more similar to archaeal I-1-Pases than to the other known bacterial or mammalian I-1-Pases with respect to substrate specificity, Li(+) inhibition, inhibition by high Mg(2+) concentrations, metal ion activation, heat stability, and activation energy. Possible reasons for the observed kinetic differences are discussed based on an active site sequence alignment of the human and T. maritima I-1-Pases.  相似文献   

8.
ABSTRACT

The orientation of the three domains in the bifunctional aspartate kinase-homoserine dehydrogenase (AK-HseDH) homologue found in Thermotoga maritima totally differs from those observed in previously known AK-HseDHs; the domains line up in the order HseDH, AK, and regulatory domain. In the present study, the enzyme produced in Escherichia coli was characterized. The enzyme exhibited substantial activities of both AK and HseDH. L-Threonine inhibits AK activity in a cooperative manner, similar to that of Arabidopsis thaliana AK-HseDH. However, the concentration required to inhibit the activity was much lower (K0.5 = 37 μM) than that needed to inhibit the A. thaliana enzyme (K0.5 = 500 μM). In contrast to A. thaliana AK-HseDH, Hse oxidation of the T. maritima enzyme was almost impervious to inhibition by L-threonine. Amino acid sequence comparison indicates that the distinctive sequence of the regulatory domain in T. maritima AK-HseDH is likely responsible for the unique sensitivity to L-threonine.

Abbreviations: AK: aspartate kinase; HseDH: homoserine dehydrogenase; AK–HseDH: bifunctional aspartate kinase–homoserine dehydrogenase; AsaDH: aspartate–β–semialdehyde dehydrogenase; ACT: aspartate kinases (A), chorismate mutases (C), and prephenate dehydrogenases (TyrA, T).  相似文献   

9.
10.
An intracellular pectinolytic enzyme, PelB (TM0437), from the hyperthermophilic bacterium Thermotoga maritima was functionally produced in Escherichia coli and purified to homogeneity. PelB belongs to family 28 of the glycoside hydrolases, consisting of pectin-hydrolysing enzymes. As one of the few bacterial exopolygalacturonases, it is able to remove monogalacturonate units from the nonreducing end of polygalacturonate. Detailed characterization of the enzyme showed that PelB is highly thermo-active and thermostable, with a melting temperature of 105 degrees C and a temperature optimum of 80 degrees C, the highest described to date for hydrolytic pectinases. PelB showed increasing activity on oligosaccharides with an increasing degree of polymerization. The highest activity was found on the pentamer (1000 U.mg(-1)). In addition, the affinity increased in conjunction with the length of the oligoGalpA chain. PelB displayed specificity for saturated oligoGalpA and was unable to degrade unsaturated or methyl-esterified oligoGalpA. Analogous to the exopolygalacturonase from Aspergillus tubingensis, it showed low activity with xylogalacturonan. Calculations on the subsite affinity revealed the presence of four subsites and a high affinity for GalpA at subsite +1, which is typical of exo-active enzymes. The physiological role of PelB and the previously characterized exopectate lyase PelA is discussed.  相似文献   

11.
A putative cytosolic alpha-mannosidase gene from a hyperthermophilic marine bacterium Thermotoga maritima was cloned and expressed in Escherichia coli. The purified recombinant enzyme appeared to be a homodimer of a 110-kDa subunit. The enzyme showed metal-dependent ability to hydrolyze p-nitrophenyl-alpha-D-mannopyranoside. In the absence of a metal, the enzyme was inactive. Cobalt and cadmium supported high activity (60 U/mg at 70 degrees C), while the activity with zinc and chromium was poor. Cobalt (0.8 mol) bound to 1 mol monomer with a K(d) of 70 microM. The optimum pH and temperature were 6.0 and 80 degrees C, respectively. The activity was inhibited by swainsonine, but not by 1-deoxymannojirimycin, which is in agreement with the features of cytosolic alpha-mannosidase.  相似文献   

12.
The cellular localization and processing of the endo-xylanases (1,4-beta-D-xylan-xylanohydrolase; EC 3.2.1.8) of the hyperthermophile Thermotoga maritima were investigated, in particular with respect to the unusual outer membrane ("toga") of this gram-negative bacterium. XynB (40 kDa) was detected in the periplasmic fraction of T. maritima cells and in the culture supernatant. XynA (120 kDa) was partially released to the surrounding medium, but most XynA remained cell associated. Immunogold labeling of thin sections revealed that cell-bound XynA was localized mainly in the outer membranes of T. maritima cells. Amino-terminal sequencing of purified membrane-bound XynA revealed processing of the signal peptide after the eighth residue, thereby leaving the hydrophobic core of the signal peptide attached to the enzyme. This mode of processing is reminiscent of type IV prepilin signal peptide cleavage. Removal of the entire XynA signal peptide was necessary for release from the cell because enzyme purified from the culture supernatant lacked 44 residues at the N terminus, including the hydrophobic part of the signal peptide. We conclude that toga association of XynA is mediated by residues 9 to 44 of the signal peptide. The biochemical and electron microscopic localization studies together with the amino-terminal processing data indicate that XynA is held at the cell surface of T. maritima via a hydrophobic peptide anchor, which is highly unusual for an outer membrane protein.  相似文献   

13.
Yang X  Ma K 《Journal of bacteriology》2007,189(8):3312-3317
An NADH oxidase from the anaerobic hyperthermophilic bacterium Thermotoga maritima was purified. The enzyme was very active in catalyzing the reduction of oxygen to hydrogen peroxide with an optimal pH value of 7 at 80 degrees C. The V(max) was 230 +/- 14 mumol/min/mg (k(cat)/K(m) = 548,000 min(-1) mM(-1)), and the K(m) values for NADH and oxygen were 42 +/- 3 and 43 +/- 4 muM, respectively. The NADH oxidase was a heterodimeric flavoprotein with two subunits with molecular masses of 54 kDa and 46 kDa. Its gene sequences were identified, and the enzyme might represent a new type of NADH oxidase in anaerobes. An NADH-dependent peroxidase with a specific activity of 0.1 U/mg was also present in the cell extract of T. maritima.  相似文献   

14.
15.
The hyperthermophilic bacterium Thermotoga maritima is capable of gaining metabolic energy utilizing xylan. XynA, one of the corresponding hydrolases required for its degradation, is a 120-kDa endo-1,4-D-xylanase exhibiting high intrinsic stability and a temperature optimum approximately 90 degrees C. Sequence alignments with other xylanases suggest the enzyme to consist of five domains. The C-terminal part of XynA was previously shown to be responsible for cellulose binding (Winterhalter C, Heinrich P, Candussio A, Wich G, Liebl W. 1995. Identification of a novel cellulose-binding domain within the multi-domain 120 kDa Xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 15:431-444). In order to characterize the domain organization and the stability of XynA and its C-terminal cellulose-binding domain (CBD), the two separate proteins were expressed in Escherichia coli. CBD, because of its instability in its ligand-free form, was expressed as a glutathione S-transferase fusion protein with a specific thrombin cleavage site as linker. XynA and CBD were compared regarding their hydrodynamic and spectral properties. As taken from analytical ultracentrifugation and gel permeation chromatography, both are monomers with 116 and 22 kDa molecular masses, respectively. In the presence of glucose as a ligand, CBD shows high intrinsic stability. Denaturation/renaturation experiments with isolated CBD yield > 80% renaturation, indicating that the domain folds independently. Making use of fluorescence emission and far-UV circular dichroism in order to characterize protein stability, guanidine-induced unfolding of XynA leads to biphasic transitions, with half-concentrations c1/2 (GdmCl) approximately 4 M and > 5 M, in accordance with the extreme thermal stability. At acid pH, XynA exhibits increased stability, indicated by a shift of the second guanidine-transition from 5 to 7 M GdmCl. This can be tentatively attributed to the cellulose-binding domain. Differences in the transition profiles monitored by fluorescence emission and dichroic absorption indicate multi-state behavior of XynA. In the case of CBD, a temperature-induced increase in negative ellipticity at 217 nm is caused by alterations in the environment of aromatic residues that contribute to the far-UV CD in the native state.  相似文献   

16.
Enolase (2-phospho-D-glycerate hydrolase; EC 4.2.1.11) from the hyperthermophilic bacterium Thermotoga maritima was purified to homogeneity. The N-terminal 25 amino acids of the enzyme reveal a high degree of similarity to enolases from other sources. As shown by sedimentation analysis and gel-permeation chromatography, the enzyme is a 345-kDa homoctamer with a subunit molecular mass of 48 +/- 5 kDa. Electron microscopy and image processing yield ring-shaped particles with a diameter of 17 nm and fourfold symmetry. Averaging of the aligned particles proves the enzyme to be a tetramer of dimers. The enzyme requires divalent cations in the activity assay, Mg2+ being most effective. The optimum temperature for catalysis is 90 degrees C, the temperature dependence yields a nonlinear Arrhenius profile with limiting activation energies of 75 kJ mol-1 and 43 kJ mol-1 at temperatures below and above 45 degrees C. The pH optimum of the enzyme lies between 7 and 8. The apparent Km values for 2-phospho-D-glycerate and Mg2+ at 75 degrees C are 0.07 mM and 0.03 mM; with increasing temperature, they are decreased by factors 2 and 30, respectively. Fluoride and phosphate cause competitive inhibition with a Ki of 0.14 mM. The enzyme shows high intrinsic thermal stability, with a thermal transition at 90 and 94 degrees C in the absence and in the presence of Mg2+.  相似文献   

17.
In mesophilic prokaryotes, the DNA-binding protein HU participates in nucleoid organization as well as in regulation of DNA-dependent processes. Little is known about nucleoid organization in thermophilic eubacteria. We show here that HU from the hyperthermophilic eubacterium Thermotoga maritima HU bends DNA and constrains negative DNA supercoils in the presence of topoisomerase I. However, while binding to a single site occludes approximately 35 bp, association of T. maritima HU with DNA of sufficient length to accommodate multiple protomers results in an apparent shorter occluded site size. Such complexes consist of ordered arrays of protomers, as revealed by the periodicity of DNase I cleavage. Association of TmHU with plasmid DNA yields a complex that is remarkably resistant to DNase I-mediated degradation. TmHU is the only member of this protein family capable of occluding a 35 bp nonspecific site in duplex DNA; we propose that this property allows TmHU to form exceedingly stable associations in which DNA flanking the kinks is sandwiched between adjacent proteins. We suggest that T. maritima HU serves an architectural function when associating with a single 35 bp site, but generates a very stable and compact aggregate at higher protein concentrations that organizes and protects the genomic DNA.  相似文献   

18.
《Gene》1996,174(1):121-128
We have cloned and sequenced two overlapping DNA fragments (3236 bp) containing a gene encoding the ATPase subunit of a type II DNA topoisomerase from the hyperthermophilic bacterion Thermotoga maritima (Tm Top2B). The deduced protein is composed of 636 aa with a calculated molecular mass of 72 415 Da. It shares significant similarities with the ATPase subunits of mesophilic bacterial DNA topoisomerases II, either DNA gyrase (GyrB) or DNA topoisomerase IV (ParE). Although the highest similarity scores are obtained with GyrB proteins (55% identity with Bacillus subtilis DNA gyrase), a detailed phylogenetic analysis of all known DNA topoisomerases II does not allow us to determine if Tm Top2B corresponds to a DNA gyrase or a DNA topoisomerase IV. This hyperthermophilic Top2B protein exhibits a larger amount of charged amino acids than its mesophilic homologues, a feature which could be important for its thermostability. No gyrA-like gene has been found near top2B. A gene coding for a transaminase B-like protein was found in the upstream region of top2B.  相似文献   

19.
As a step towards studying representative members of the two-component family of signal transduction proteins, we have cloned genes encoding a histidine protein kinase and a response regulator from the hyperthermophilic bacterium Thermotoga maritima. The genes have been designated HpkA and drrA, respectively. The deduced HpkA sequence contains all five characteristic histidine protein kinase motifs with the same relative order and spacing found in the mesophilic bacterial proteins. A hydropathy profile indicates that HpkA possesses only one membrane-spanning segment located at the extreme N terminus. The N-terminal region of DrrA exhibits all of the characteristics of the conserved domains of mesophilic bacterial response regulators, and the C-terminal region shows high similarity to the OmpR-PhoB subfamily of DNA-binding proteins. Recombinant T. maritima proteins, truncated HpkA lacking the putative membrane-spanning N- terminal amino acids and DrrA, were expressed in Escherichia coli. Partial purification of T. maritima proteins was achieved by heat denaturation of E. coli host proteins. In an in vitro assay, truncated HpkA protein was autophosphorylated in the presence of ATP. Thus, the N-terminal hydrophobic region is not required for kinase activity. Phosphotransfer between truncated HpkA and DrrA was demonstrated in vitro with the partially purified proteins. The phosphorylation reactions were strongly temperature dependent. The results indicate that the recombinant T. maritima two-component proteins overexpressed in E. coli are stable as well as enzymatically active at elevated temperatures.  相似文献   

20.
Xylulokinase (XK, E.C. 2.7.1.17) is one of the key enzymes in xylose metabolism and it is essential for the activation of pentoses for the sustainable production of biocommodities from biomass sugars. The open reading frame (TM0116) from the hyperthermophilic bacterium Thermotoga maritima MSB8 encoding a putative xylulokinase were cloned and expressed in Escherichia coli BL21 Star (DE3) in the Luria–Bertani and auto-inducing high-cell-density media. The basic biochemical properties of this thermophilic XK were characterized. This XK has the optimal temperature of 85 °C. Under a suboptimal condition of 60 °C, the k cat was 83 s?1, and the K m values for xylulose and ATP were 1.24 and 0.71 mM, respectively. We hypothesized that this XK could work on polyphosphate possibly because this ancestral thermophilic microorganism utilizes polyphosphate to regulate the Embden–Meyerhof pathway and its substrate-binding residues are somewhat similar to those of other ATP/polyphosphate-dependent kinases. This XK was found to work on low-cost polyphosphate, exhibiting 41 % of its specific activity on ATP. This first ATP/polyphosphate XK could have a great potential for xylose utilization in thermophilic ethanol-producing microorganisms and cell-free biosystems for low-cost biomanufacturing without the use of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号