首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The risk of human diseases and abnormal development under the relatively reduced toxic environmental exposure conditions of passive cigarette smoke and urban pollution is emerging as significant. To assess the genotoxic potential of such exposure, we analyzed the DNA adducts of polynuclear aromatic hydrocarbons (PAH), a proven marker of genotoxicity, in human placental DNA samples of pregnancies monitored for passive cigarette smoke exposure. METHODS: Maternal exposure to active and passive cigarette smoke was evaluated by verbal disclosure and urinary nicotine and cotinine measurements. PAH-DNA adducts were assayed by ELISA using a polyclonal antibody against benzo[alpha]pyrene-diol-epoxide-DNA in placental DNA. Birth weights of infants were recorded in these monitored pregnancies. RESULTS: Urinary nicotine and cotinine values were reduced in the passive smoke-exposed group compared to smokers and similar to those in the nonsmoker ambient exposure group. PAH-DNA and nicotine/cotinine values were not correlated with birth weight of the infant. PAH-DNA adducts were present in approximately 25% of samples exposed to passive cigarette smoke and ambient environment. CONCLUSIONS: The study has revealed that a subpopulation of humans is predisposed to accumulating PAH adducts independent of high levels of PAH sources (e.g., maternal cigarette smoke exposure). Because DNA adducts promote genomic changes, it is likely that this subpopulation is susceptible to diverse changes in the genome that may influence human development.  相似文献   

2.
BACKGROUND: Polynuclear aromatic hydrocarbons (PAH), benzo[alpha]pyrene (B[alpha]P) and 7,12-dimethylbenz[alpha]anthracene (DMBA) are toxic environmental agents distributed widely. The relative deleterious effects of these agents on growth and blood vasculature of fetus and placental tissues of the rat were studied. METHODS: Pregnant rats (Day 1 sperm positive) with implantation sites confirmed by laparotomy were treated intraperitoneally (i.p.) on Pregnancy Days 10, 12, and 14 with these agents dissolved in corn oil at cumulated total doses 50, 100, and 200 mg/kg/rat, and control with corn oil only (3-20 dams/group). Fetal growth, tissue hemorrhage, and placental pathology were evaluated by different parameters on Pregnancy Day (PD) 20 in treated and control rats. RESULTS: DMBA was relatively more deleterious compared to B[alpha]P indicated by increased lethality and progressive reduction of body weight of the mother with increasing doses. At 200 mg/kg/rat doses of these agents, maternal survival was 45% and 100% and body weight reduced 24% and 52% of controls, respectively. The fetal survival rates in live mothers were similar to that of controls. They induced marked fetal growth retardation and necrosis of placental tissues. B[alpha]P and DMBA produced significant toxicity to differentiating fetal blood vascular system as exhibited by rupture of blood vessels and hemorrhage, especially in the skin, cranial, and brain tissues. CONCLUSIONS: Maternal PAH exposure induced placental toxicity and associated adverse fetal development and hemorrhage in different parts of the fetal body, in particular, marked intradermal and cranial hemorrhage, showing that developing fetal blood vasculature is a target of PAH toxicity.  相似文献   

3.
Human placental microsomes were incubated with [3H]benzo[a]pyrene (BP) and Salmon sperm DNA and the resulting metabolite-nucleoside complexes resolved by Sephadex LH-20 chromatography. The metabolite pattern was analyzed by high-pressure liquid chromatography (HPLC). The incubates were also co-chromatographed with extracts obtained from incubates with rat liver microsomes and [14C]BP. Phenols, quinones and 7,8-dihydrodiol were detected in the placental incubates. Both 9,10- and 4,5-dihydrodiols were very low as compared with control rat liver samples. Placental microsomes catalyzed the binding of BP metabolites to DNA in vitro, giving rise to two main complexes which co-chromatographed with rat liver-produced peaks attributable to 7,8-diol-9,10-epoxide and 7,8-oxide and/or quinones when metabolized further. The nucleoside metabolite peaks attributable to 4,5-oxide and 9-phenol-4,5-oxide were lacking when compared with the binding pattern catalyzed by rat liver. Both the total binding and specific metabolite-nucleoside adducts in the placenta correlated with fluorometrically measured aryl hydrocarbon hydroxylase (AHH) activity and with the amount of dihydrodiol formed. The results demonstrate that both the metabolite pattern and the nucleoside-metabolite complexes formed by the placental microsomes in vitro differed greatly from those produced by rat liver microsomes. These studies also suggest that it is not possible to predict specific patterns of DNA binding from AHH measurements or even from BP metabolite patterns, especially when comparing different tissues and species.  相似文献   

4.
Reactive oxygen species (ROS), possibly produced during the metabolic conversion of benzo(a)pyrene (B[a]P), could be involved in B[a]P-induced genotoxicity and, eventually, carcinogenicity. Therefore, ROS formation by rat lung and liver microsomes was studied in vitro by electron spin resonance (ESR/EPR) spectrometry. B[a]P-mediated generation of ROS was detected in incubations with rat lung, but not with liver microsomes. Inhibition of cytochrome P450 (CYP450) by the non isoform-specific inhibitor SKF-525A resulted in a complete inhibition of B[a]P-dependent ROS formation, whereas ROS formation was not affected by inhibition of prostaglandin H synthase by indomethacin. Subsequently, bulky DNA adduct formation and 8-oxo-dG levels after a single oral dose of B[a]P were examined in vivo in rat lung and liver, in combination with urinary excretion of 8-oxodG. B[a]P exposure resulted in increased urinary 8-oxo-dG levels. On the contrary, 8-oxo-dG levels decreased in liver and lung after B[a]P exposure. Bulky DNA adducts reached higher levels and were more persistent in rat lung than in liver. These results indicate that ROS are generated during the CYP450 dependent metabolism of B[a]P, particularly in the rat lung, but this does not necessarily result in increased levels of oxidative DNA damage in vivo, possibly by induction of DNA repair mechanisms.  相似文献   

5.
Reactive oxygen species (ROS), possibly produced during the metabolic conversion of benzo(a)pyrene (B[a]P), could be involved in B[a]P-induced genotoxicity and, eventually, carcinogenicity. Therefore, ROS formation by rat lung and liver microsomes was studied in vitro by electron spin resonance (ESR/EPR) spectrometry. B[a]P-mediated generation of ROS was detected in incubations with rat lung, but not with liver microsomes. Inhibition of cytochrome P450 (CYP450) by the non isoform-specific inhibitor SKF-525A resulted in a complete inhibition of B[a]P-dependent ROS formation, whereas ROS formation was not affected by inhibition of prostaglandin H synthase by indomethacin. Subsequently, bulky DNA adduct formation and 8-oxo-dG levels after a single oral dose of B[a]P were examined in vivo in rat lung and liver, in combination with urinary excretion of 8-oxodG. B[a]P exposure resulted in increased urinary 8-oxo-dG levels. On the contrary, 8-oxo-dG levels decreased in liver and lung after B[a]P exposure. Bulky DNA adducts reached higher levels and were more persistent in rat lung than in liver. These results indicate that ROS are generated during the CYP450 dependent metabolism of B[a]P, particularly in the rat lung, but this does not necessarily result in increased levels of oxidative DNA damage in vivo, possibly by induction of DNA repair mechanisms.  相似文献   

6.
The formation of benzo[a]pyrene (BP)-DNA adducts was studied in vitro in the presence of microsomes prepared from the isolated labyrinth zone of the rat placenta, the hematopoietic erythroblast cells of the fetal liver, the fetal liver, as well as the maternal liver. Pregnant rats received beta-naphthoflavone (beta NF; 15 mg/kg, i.p.) on day 17 gestation. One day later, placentae, fetal and maternal livers were obtained and hematopoietic erythroblast cells were separated from hepatocytes in the fetal livers. The respective microsomal fractions were incubated in the presence of calf thymus DNA, NADPH-regenerating system and [3H]BP (300 microCi) at 37 degrees C for 30 min. Following beta NF pretreatment, the levels of covalent binding (pmol/mg DNA/mg microsomal protein) for maternal liver, fetal liver, placenta and erythroblast cells were: 28.4, 2.4, 0.31 and 3.9, respectively, with the hematopoietic erythroblast cells being the most active among fetal tissue preparations. The extent of transplacental induction compared to control was greatest in the hematopoietic cells (18-fold) followed by fetal liver (16-fold) and labyrinth zone (5-fold). Further experiments characterized the BP-DNA adducts formed by induced microsomes. DNA was isolated, purified and digested sequentially with DNase I, snake venom phosphodiesterase type II and alkaline phosphatase type III. The deoxynucleoside-BP adducts were purified on a Sephadex LH-20 column and then separated on HPLC and the adducts were quantitated radiometrically. Seven distinct adducts were separated on HPLC and named A-G in order of elution. Adduct B was prominent in all preparations (22-55% total radioactivity). The adduct profile and retention time for peak B is similar to that reported for the adduct formed by microsomal activation of 9-hydroxy BP. Peak D constituted a major fraction (19%) in maternal liver profiles in comparison with the three fetal tissue preparations (8%). In subsequent experiments, peak D was shown to be derived from reaction of (+/-)7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) with DNA. Peak C was unique to erythroblast cell and labyrinth profiles, while peak G was specific for maternal liver and fetal liver profiles. These results demonstrate that fetal liver and its hematopoietic cells are significant sites of BP bioactivation which may contribute to the fetal toxicity of polyaromatic hydrocarbons.  相似文献   

7.
Five distinct hydrocarbon-deoxyribonucleoside adducts are separated by high pressure liquid chromatography after reaction of benzo[alpha]pyrene with calf thymus DNA in the presence of liver microsomes from 3-methylcholanthrene treated rats. The two major adducts co-chromatography with deoxyribonucleoside adducts obtained after hydrolysis of calf thymus DNA previously reacted with liver microsomal metabolically activated 9-hydroxy-benzo[alpha]pyrene or trans-7,8-dihydro-7,8-dihydroxybenzo[alpha]pyrene. High magnesium ion concentrations in the microsomal incubations cause a significant decrease in the covalent binding of the hydrocarbon to DNA but do not affect the qualitative distribution of the individual benzo[alpha]pyrene-deoxyribonucleoside adducts.  相似文献   

8.
Glucuronidation of benzo[a]pyrene (B[a]P) metabolites, generated in situ by oxidative pathways, was studied using mouse liver uninduced microsomes. No coupling was evident between UDP-glucuronyltransferase and oxygenation of B[a]P. UDPGA protected microsomal macromolecules against binding of reactive B[a]P metabolites. Superoxide, and other reactive oxygen species decreased both the overall B[a]P metabolism and glucuronidation of some B[a]P metabolic products, and caused more extensive binding to macromolecules; UDPGA was less protective in this condition. Peroxidation of microsomes differentially affected glucuronidation of various metabolites of B[a]P, and of various model substrates, indicating that multiple glucuronyltransferases are involved in the conjugation of hydroxylated metabolites of B[a]P.  相似文献   

9.
Mechanisms of co-carcinogenicity of particulates, such as iron oxide and asbestos, and benzo[a]pyrene (B[a]P) are not completely understood. Particulates dramatically alter rates of uptake of B[a]P into membranes, a factor which could account for co-carcinogenicity. However, B[a]P must be activated to reactive forms to be carcinogenic and mutagenic so alterations in metabolism of B[a]P by particulates also could result in co-carcinogenesis. To elucidate mechanisms of particulate-B[a]P co-carcinogenesis, we have correlated rates of uptake of B[a]P into microsomes with metabolism of B[a]P and with mutagenicity of B[a]P in the Ames test. In general, aryl hydrocarbon hydroxylase (AHH) activity paralleled rates of uptake of B[a]P, though some inhibition of AHH activity by particulates which was not attributable to availability of B[a]P was evident. This inhibition was studied further by assaying separately mixed function oxidase and epoxide hydrase activities in the presence of particulates. Both chrysotile and iron oxide inhibited O-deethylation of 7-ethoxyresorufin and hydration of B[a]P-4,5-oxide. To determine effects of this inhibition on activation of B[a]P to reactive forms, we studied profiles of metabolites of B[a]P and mutagenicity of B[a]P. The only alteration in profiles of B[a]P metabolites produced by particulates was that due to effects on rates of uptake. Similarly, mutagenicity of B[a]P was positively correlated with rates of uptake into microsomes. We conclude that the predominant effects of chrysotile and iron oxide are in altering rates of uptake of particle-adsorbed B[a]P. Changes in uptake rates then result in alterations of B[a]P metabolism and mutagenicity.  相似文献   

10.
Here we show that several cell signaling inhibitors have effect on cyp1a1 expression and the metabolism of benzo[a]pyrene (B[a]P) in Hepa1c1c7 cells. The CYP1A1 inhibitor alpha-naphthoflavone (alpha-NF), the p53 inhibitor pifithrin-alpha (PFT-alpha), the ERK inhibitors PD98059 and U0126, and the p38 MAPK inhibitors SB202190 and PD169316 induced the expression and level of cyp1a1 protein. On the other hand, during the first h the inhibitors appeared to reduce the metabolism of B[a]P as measured by the generation of tetrols and by covalent binding of B[a]P to macromolecules. In contrast, the phosphatidylinositol-3 (PI-3) kinase inhibitor wortmannin, had neither an effect on the cyp1a1 expression nor the B[a]P-metabolism. In order to avoid these unspecific effects, we characterized the mechanisms involved in the apoptotic effects of B[a]P-metabolites. B[a]P and the B[a]P-metabolites B[a]P-7,8-DHD and BPDE-I induced apoptosis, whereas B[a]P-4,5-DHD had no effect. B[a]P, B[a]P-7,8-DHD and BPDE-I induced an accumulation and phosphorylation of p53, while the Bcl-2 proteins Bcl-xl, Bad and Bid were down-regulated. Interestingly, the levels of anti-apoptotic phospho-Bad were up-regulated in response to B[a]P as well as to B[a]P-7,8-DHD and BPDE-I. Both p38 MAPK and JNK were activated, but the p38 MAPK inhibitors were not able to inhibit BPDE-I-induced apoptosis. PFT-alpha reduced the BPDE-I-induced apoptosis, while both the PI-3 kinase inhibitor and the ERK inhibitors increased the apoptosis in combination with BPDE-I. BPDE-I also triggered apoptosis in primary cultures of rat lung cells. In conclusion, often used cell signaling inhibitors both enhanced the expression and the level of cyp1a1 and more directly acted as inhibitors of cyp1a1 metabolism of B[a]P. However, studies with the B[a]P-metabolite BPDE-I supported the previous suggestion that p53 has a role in the pro-apoptotic signaling pathway induced by B[a]P. Furthermore, these studies also show that the reactive metabolites of B[a]P induce the anti-apoptotic signals, Akt and ERK. Neither the induction nor the activity of p38 MAPK and JNK seems to be of major importance for the B[a]P-induced apoptosis.  相似文献   

11.
Gupta RC  Arif JM  Gairola CG 《Mutation research》1999,424(1-2):195-205
Exposure to tobacco smoke has been implicated in the increased incidence of cancer and cardiovascular diseases. This report describes various experimental studies in animals that were carried out to determine the ability of cigarette smoke to form DNA adducts and to define chromatographic nature of the major adducts. Tissues from rodents exposed to mainstream or sidestream cigarette smoke in nose-only and whole-body exposure systems, respectively, for different durations were analyzed for DNA adducts by 32P-postlabeling assay. The results showed essentially similar qualitative patterns in various respiratory (lung, trachea, larynx) and non-respiratory (heart, bladder) tissues of smoke-exposed rats. However, adduct pattern in the nasal mucosa was different. The mean total DNA adducts in various tissues expressed as per 1010 nucleotides exhibited the following order: heart (700)>lung (420)>trachea (170)>larynx (150)>bladder (50). Some qualitatively identical adducts were routinely detected in tissues from sham-treated rats but at greatly reduced levels (5- to 25-fold). The levels of lung DNA adducts increased with the duration of exposure up to 23 weeks and returned to control levels 19 weeks after the cessation of exposure. Species-related differences in adduct magnitude and patterns were observed among rats, mice and guinea pigs; mouse being the most sensitive to DNA damage and guinea pig the least sensitive. Whole-body exposure of rats to sidestream cigarette smoke also enhanced the pre-existing DNA adducts by several fold in different tissues. Selective chromatography, and extractability in butanol suggested lipophilic nature of smoke-associated DNA adducts, which were, however, recovered significantly better in nuclease P1 than butanol enrichment procedure. The major smoke-associated adducts were chromatographically different from any of the reference adducts of polycyclic aromatic hydrocarbons (PAHs) co-chromatographed with the smoke DNA samples. Because PAH-DNA adducts are recovered with equal efficiency by the two enrichment procedures, the above observations suggested that smoke-associated adducts are not related to typical PAHs, like benzo[a]pyrene. It is concluded that cigarette smoke increased the levels of pre-existing endogenous DNA adducts (the so-called I-compounds) in animal models and that these adducts are unrelated to those formed by typical PAHs.  相似文献   

12.
13.
The effects of insulin, prostaglandin E1 (PGE1) and uptake inhibitors on unidirectional D-glucose influx at brush border (maternal) and basal (fetal) sides of the guinea-pig syncytotrophoblast were investigated in the intact, perfused guinea-pig placenta by rapid, paired-tracer dilution. Experiments were performed in either an in situ preparation artificially perfused through the umbilical vessels (intact maternal circulation) or in the fully isolated dually-perfused placenta in which both interfaces were studied simultaneously. Kinetic characterization of unidirectional D-glucose influx gave apparent Km values (mean +/- SEM) at maternal and fetal sides of 70 +/- 6 and 87 +/- 16 mM respectively; corresponding Vmax values were 53 +/- 3 and 82 +/- 6 mumol min-1g-1. At the fetal side (singly-perfused placenta) cytochalasin B (50 microM), ethylidene-D-glucose (100 mM) and PGE1 (1 microM) partially inhibited D-glucose uptake whereas cortisol (50 microM) and progesterone (100 microM) had no effect. Abolition of the sodium gradient across the fetal interface did not modulate the kinetics of influx. In the presence of 150 mu units ml-1 insulin (dually-perfused placenta), unidirectional uptake into the trophoblast and transplacental D-[3H]glucose transfer were unaltered. In contrast, prostaglandin E1 (1 microM) markedly reduced the Km and Vmax for D-glucose at both interfaces and the inhibitory effect was reflected in a reduction in specific transplacental D-glucose transfer. Further experiments showed that the isolated placenta releases prostaglandins (PGE; PGF2 alpha) into both circulations. Bilateral insulin perfusion did not affect either lactate release by the placenta or rapid metabolism of D-[14C]glucose to [3H]lactate (usually less than 10% effluent [14C]lactate in 5 min). An asymmetric degradation of exogenous insulin was observed in the dually-perfused placenta: uterine venous samples contained 24 +/- 7 microunits ml-1 immunoreactive insulin when compared to the arterial concentration (151 +/- 3 microU ml-1 perfusate) while no change was measureable in the fetal circulation within the same time period (152 +/- 5 microU ml-1). This asymmetry was confirmed in experiments employing [125I]insulin. These results demonstrate that glucose transport in the intact guinea-pig placenta occurs by a sodium-independent, cytochalasin B-inhibitable system which is insulin-insensitive. Prostaglandin E1 appeared to be a potent transport inhibitor which suggests that prostaglandins may be involved in the 'down' regulation of placental glucose transport in vivo.  相似文献   

14.
The existence of the enzyme glucose-6-phosphatase (G6Pase) in early and term human placenta was investigated by comparing the characteristics of placental microsomal glucose 6-phosphate (G6P) hydrolytic activity and liver G6Pase. Placental microsomes exhibited similar apparent Km values for G6P and beta-glycerophosphate in intact and deoxycholate-treated microsomes, heat stability at acidic pH, low latency of mannose 6-phosphate hydrolysis, very low activity of pyrophosphate: glucose phosphotransferase, and undetectable [U-14C]G6P transport into the placental microsomes, all of which indicated that specific G6Pase activity does not exist in placenta. Immunological evidence of the absence of both 36.5 kDa and T2 proteins, which represent the G6Pase catalytic protein and the phosphate/pyrophosphate transporter protein, respectively, confirmed that early and term human placenta are devoid of the multicomponent G6Pase enzyme.  相似文献   

15.
Arachidonic acid metabolic pathway of the rabbit placenta   总被引:1,自引:0,他引:1  
Placenta microsomes prepared from animals late in gestation (29 days) efficiently metabolize arachidonic acid into PGE2, PGF2 alpha, PGD2, TxA2 and little or no prostacyclin. In contrast to the late gestation placenta, the early (17 day) placental microsomes synthesize primarily PGE2. The cytosolic (100,000 X g supernatant) fraction from early or late gestation placentae converted arachidonic acid, with a calcium dependent enzyme, into non-polar metabolites whose synthesis was inhibited by ETYA but not indomethacin. These metabolites were purified by HPLC and GC-MS analysis indicated the presence of 12-hydroxy-, 15-hydroxy-, and 11-hydroxy-eicosatetraenoic acid. The mitochondrial (8,000 X g pellet) produced PGE2; PGF2 alpha; 12-, 11-, 15-HETE; the C-17 fragment HHT; and the unusual cyclooxygenase metabolite 15-keto-PGE2. These biologically active metabolites may play a vital role in the reproductive function of the placenta.  相似文献   

16.
Epithelial cells of the gastrointestinal tract are challenged by exposure to many potentially toxic agents including the well-known food contaminant benzo[a]pyrene (B[a]P). They are equipped with a variety of Phase 1- and Phase 2-enzymes that are able to metabolize B[a]P. Furthermore, transmembranous ABC-transport proteins are expressed at the apical pole of these cells. The aim of this study was to investigate whether [14C]B[a]P or products of the metabolism are transported by intestinal cells back into the gut lumen. The intestinal Caco-2 cell line was used as a metabolism and transport model. Experiments with Caco-2 monolayers in the Transwell-system revealed that radiolabeled substance is transported towards the apical (luminal) region. This transport was characterized as active and increased after induction of cytochromes P450 1A1 and 1B1 by beta-naphthoflavone. On the other hand, transport was decreased with the concomitant inhibition of Phase 1-metabolism. TLC-analysis revealed that the primary metabolites of B[a]P found in the supernatant were very polar; other metabolites of less polarity could only be detected in trace amounts. These results indicate that B[a]P is metabolized by Caco-2 cells to highly polar metabolites resulting from biphasic metabolism and that these polar metabolites are subject to an apically directed transport. Chemical inhibition studies showed that P-glycoprotein and MRP1 or 2 were not involved in this polarized B[a]P-metabolite secretion.  相似文献   

17.
Administration of 3-methylcholanthrene (3MC) to rats greatly enhanced the aryl hydrocarbon hydroxylase (AHH) activity of liver nuclei. However, the binding in vitro [3H]benzo[alpha]pyrene (BP) to DNA within the nuclei which occurred at the same time as hydroxylation of BP was much less enhanced. Thin layer chromatography of the metabolites of BP produced by these nuclei revealed the same metabolites in similar relative amounts as were produced by rat liver microsomes prepared from rats which had received 3MC. The binding to DNA was further analysed by hydrolysis of the DNA and fractionation on a Sephadex column. This analysis revealed that the binding to DAN in nuclei was very similar in nature to that which occurred when calf-thymus DNA was added to microsomes metabolising BP.  相似文献   

18.
Specific A-ring hydroxylated metabolites of 17beta-estrogens are known to be endogenous pro-carcinogens, more particularly the 4-hydroxylated forms of estrogens produced by cytochrome P4501B1. In this study, we investigated whether estradiol-17alpha, the main hepatic residue of estradiol-17beta in cattle treated for anabolic purposes with estradiol containing implants, could be significantly metabolized by human cells, and whether its aromatic metabolites could induce the formation of DNA adducts as estradiol-17beta and estrone do. First, using a human kidney adenocarcinoma cell line, which expresses specifically the cytochrome P4501B1, we showed that estradiol-17alpha is bioactivated into a mixture of 2- and 4-catechol estrogens leading to the corresponding methoxyestrogens unambiguously identified by LC-APCI-MS/MS. We then demonstrated that the 2- and 4-hydroxylated derivatives of estradiol-17alpha incubated under oxidative conditions with calf thymus DNA gave stable DNA adducts and abasic sites, respectively. From these results, we can consider that human cells expressing CYP1B1-dependent hydroxylation activities metabolize estradiol-17alpha at the same magnitude as estradiol-17beta and estrone, and that in oxidative conditions, the resulting aromatic metabolites can lead to the formation of both stable and unstable DNA adducts.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs) present in ambient air are considered as potential human carcinogens, but the detailed mechanism of action is still unknown. Our aim was to study the in vitro effect of exposure to dibenzo[a,l]pyrene (DB[a,l]P), the most potent carcinogenic PAH ever tested, and benzo[a]pyrene (B[a]P) in a normal human diploid lung fibroblast cells (HEL) using multiple endpoints. DNA adduct levels were measured by 32P-postlabelling, the expression of p53 and p21(WAF1) proteins by western blotting and the cell cycle distribution by flow cytometry. For both PAHs, the DNA adduct formation was proportional to the time of exposure and dependent on the stage of cell growth in culture. DNA binding was detectable even at the lowest concentration used (24h exposure, 0.01 microM for both PAHs). The highest DNA adduct levels were observed after 24h of exposure in near-confluent cells (>90% of cells at G0/G1 phase), but DNA damage induced by DB[a,l]P was approximately 8-10 times higher at a concentration one order of magnitude lower as compared with B[a]P (for B[a]P at 1 microM and for DB[a,l]P at 0.1 microM: 237+/-107 and 2360+/-798 adducts/10(8) nucleotides, respectively). The induction of p53 and p21(WAF1) protein occurred subsequent to the induction of DNA adducts. The DNA adduct levels correlated with both p53 (R=0.832, P<0.001 and R=0.859, P<0.001, for DB[a,l]P and B[a]P, respectively) and p21(WAF1) levels (R=0.808, P<0.001 and R=0.797, P=0.001, for DB[a,l]P and B[a]P, respectively), regardless of the PAH exposure and the phase of cell growth. The results showed that a detectable increase of p53 and p21(WAF1) proteins (> or = 1.5-fold as compared with controls) requires a minimal DNA adduct level of approximately 200-250 adducts/10(8) nucleotides for both PAHs tested and suggest that the level of adducts rather than their structure triggers the p53 and p21(WAF1) responses. The cell cycle was altered after 12-16h of treatment, and after 24h of exposure to 0.1 microM DB[a,l]P in growing cells, there was approximately 24% increase in S phase cells accompanied by a decrease in G1 and G2/mitosis (G2/M) cells. Cell treatment with 1.0 microM B[a]P resulted in more subtle alterations. We conclude that DB[a,l]P, and to a lesser degree B[a]P, are able to induce DNA adducts as well as p53 and p21(WAF1) without eliciting G1 or G2/M arrests but rather an S phase delay/arrest. Whether the S phase delay observed in our study is beneficial for the survival of the cells remains to be further established.  相似文献   

20.
The appearance of arachidonic acid (AA) oxidation products in fetal rabbit brain and placenta under normal or partial short-term ischemic episodes induced by placental blood vessel restriction was examined. Intracerebral administration of [3H]AA into close-to-term rabbit fetuses gave rise to radioactively labeled prostaglandin (PG) E2, thromboxane B2, and 6-keto-PGF1 alpha metabolites as detected by HPLC analysis. A significant increase of 20-30% of [3H]AA precursor into eicosanoids was detected in brain of fetuses after 2-h restriction. The thromboxane B2 and 6-keto-PGF1 alpha levels were determined by radioimmunoassay technique over a period of 48 h following ischemic episodes. Thromboxane B2 content in affected animals was higher by five- and twofold at 3 h over control fetal brain and placental tissue values, respectively, and remained significantly higher for 24 h. 6-Keto-PGF1 alpha levels reached a peak value that was greater by 2.5- and 1.5-fold at 6 h for the ischemic brain and placental tissue, respectively, compared with control fetuses. PGE2 levels were less affected, attaining a maximum of 1.9- and 1.1-fold in brain and placenta correspondingly. The thromboxane/prostacyclin ratio reached a maximum in the brain after approximately 3 h, while that in the placenta continued to rise even after 20 h. Persisting high levels of thromboxane are indicative of cerebral vasoconstriction and may suggest possible damaging effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号