首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific cDNA and oligonucleotide probes were used to study the appearance of transthyretin mRNA in developing rat brain using Northern gel analysis, cytoplasmic dot hybridization, and in situ hybridization. Transthyretin mRNA in embryonic rat brain was found to be confined to the epithelial layer of the choroid plexus primordia appearing first in the fourth ventricle, followed by appearance in the lateral ventricles, and subsequently in the third ventricle. Transthyretin mRNA was localized in these cells from early stages of neuroepithelium differentiation, showing that it is a sensitive marker for the differentiation of the choroid plexus within the fetal brain.  相似文献   

2.
The sequence of events in the development of the brain in human embryos, already published for stages 8-17, is here continued for stages 18 and 19. With the aid of a computerized bubble-sort algorithm, 58 individual embryos were ranked in ascending order of the features present. The increasing structural complexity provided 40 new features in these two stages. The chief characteristics of stage 18 (approximately 44 postovulatory days) are rapidly growing basal nuclei; appearance of the extraventricular bulge of the cerebellum (flocculus), of the superior cerebellar peduncle, and of follicles in the epiphysis cerebri; and the presence of vomeronasal organ and ganglion, of the bucconasal membrane, and of isolated semicircular ducts. The main features of stage 19 (approximately 48 days) are the cochlear nuclei, the ganglion of the nervus terminalis, nuclei of the prosencephalic septum, the appearance of the subcommissural organ, the presence of villi in the choroid plexuses of the fourth and lateral ventricles, and the stria medullaris thalami.  相似文献   

3.
Summary The scanning electron microscope was used to survey the brain ventricular system of the female armadillo (Dasypus novemcinctus) with emphasis on the third ventricle. The walls of the lateral ventricles, aqueduct, and fourth ventricle are covered by long cilia. In the lateral ventricle, the cilia are arranged in groups; but in the aqueduct and fourth ventricle, they are evenly placed over the cellular surfaces. The ependymal cells of the third ventricle are densely ciliated except for the organum vasculosum and infundibular recess. The non-ciliated luminal surface of these areas has a pebblestone appearance punctuated by numerous microvilli and two types of supraependymal cells.Supported by Edward G. Schlieder Foundation GrantThe authors would like to thank Jacqueline Skaggs for her secretarial assistance and Garbis Kerimian for his photographic work  相似文献   

4.
The development and the differentiation of the ventricular system of the brain of tadpoles of the South African Clawed Toad, Xenopus laevis (Daudin), is studied by light microscopy (stages 45 to 66) and scanning and transmission electron microscopy (stages 50 to 66). Special interest is paid to the ependymal structures of the foramen of Monroe, the ventricles of the diencephalon, the mesencephalon, and the rhombencephalon, and to the ependymal of the central canal and the choroid plexus of the third and fourth ventricle. At early developmental stages the lower two thirds of the ventricles are dominated by blebs, cytoplasmatic protrusions of the ependymal cells. During the development they become reduced and replaced by cilia. The number of cilia and microvilli increases strongly towards the end of the metamorphosis. The surface structures demonstrated by scanning electron microscopy are discussed in respect to morphology and physiology.  相似文献   

5.
Choroid plexus and paraphysis in lower vertebrates   总被引:1,自引:0,他引:1  
Cytoarchitecture of the choroid plexus of the third ventricle and the paraphysis was investigated in some lower vertebrates to compare the histologic characteristics of these organs. Both epithelia are similar in appearance in the same class. Minor microscopic variations exist in the different classes of vertebrates, but do not provide a fundamental distinction between the two organs. The epithelia, moreover, have similar staining properties, contain mucicarmine- and PAS-reactive materials, and are derived from a common neuroepithelium. Tubules are identified in the choroid plexus and in the paraphysis; all are similarly formed by simple folding of epithelium on the surface into the stroma. The paraphyses in all vertebrates studied contain villi similar to those seen in the choroid plexus. Cilia are identified in both choroidal and paraphyseal epithelia, and are not an indication of degree of epithelial differentiation. Many types of epithelium are noted in both organs during histologic differentiation as well as in the mature stage. Functionally, the choroid plexus is active in both secretion and absorption. Accumulation of particulate material within the epithelial cytoplasm may indicate phagocytic as well as absorptive activity of cells. Based on a common neuroepithelial origin and similar histochemical properties, we conclude that the paraphysis is a modified choroid plexus. The velum transversum is an arbitrary boundary between diencephalon and telencephalon, and is itself formed of choroid plexus. The medial telencephalic ventricle is the rostral portion of the third ventricle. All neuroepithelial infoldings at the rostral end of the diencephalic roof including the velum transversum are intraventricular choroid plexuses; the neuroepithelial outpouchings in this region are the extraventricular choroid plexuses (paraphysis) of the diencephalon.  相似文献   

6.
There has been considerable recent progress in understanding the processes involved in brain development. An analysis of a number of neurological conditions, together with our studies of the hydrocephalic Texas (H-Tx) rat, presents an important role for cerebrospinal fluid (CSF) in the developmental process. The fluid flow is essentially one-way and the location of the choroid plexuses in the lateral, third, and fourth ventricles allows for the possibility of new components being added to the fluid at these points. The role of the fourth ventricular CSF is particularly interesting since this is added to the fluid downstream of the cerebral hemisphere germinal epithelium (the main site of cortical cell proliferation and differentiation) and is destined for the basal cisterns and subarachnoid space suggesting different target cells to those within the ventricular system. Moreover, other sources of additions to the CSF exist, notably the subcommissural organ, which sits at the opening of the third ventricle into the cerebral aqueduct and is the source of Reisner's fibre, glycoproteins, and unknown soluble proteins. In this paper a model for the role of CSF is developed from studies of the development of the cortex of the H-Tx rat. We propose that CSF is vital in controlling development of the nervous system along the whole length of the neural tube and that the externalisation of CSF during development is essential for the formation of the layers of neurones in the cerebral cortex.  相似文献   

7.
Cerebrospinal fluid (CSF)-contacting neurons are sensory-type cells sending ciliated dendritic process into the CSF. Some of the prosencephalic CSF-contacting neurons of higher vertebrates were postulated to be chemoreceptors detecting the chemical composition of the CSF, other cells may percieve light as "deep encephalic photoreceptors". In our earlier works, CSF-contacting neurons of the mechanoreceptor-type were described around the central canal of the hagfish spinal cord. It was supposed that perceiving the flow of the CSF they are involved in vasoregulatory mechanisms of the nervous tissue. In the present work, we examined the brain ventricular system of the Atlantic hagfish with special reference to the presence and fine structure of CSF-contacting neurons. Myxinoids have an ontogenetically reduced brain ventricular system. In the adult hagfish (Myxine glutinosa) the lumen of the lateral ventricle is closed, the third ventricle has a preoptic-, infundibular and subhabenular part that are not connected to each other. The choroid plexus is absent. The infundibular part of the third ventricle has a medial hypophyseal recess and, more caudally, a paired lateral recess. We found CSF-contacting neurons in the lower part of the third ventricle, in the preoptic and infundibular recess as well as in the lateral infundibular recesses. No CSF-contacting neurons were found in the cerebral aqueduct connecting the subhabenular recess to the fourth ventricle. There is a pineal recess and a well-developed subcommissural organ at the rostral end of the aqueduct. Extending from the caudal part of the fourth ventricle in the medulla to the caudal end of the spinal cord, the central canal has a dorsal and ventral part. Dendrites of CSF-contacting neurons are protruding into the ventral lumen. Corroborating the supposed choroid plexus-like function of the wall of the dorsal central canal, segmental vessels reach a thin area on both sides of the ependymal lining. The perikarya of the CSF-contacting neurons found in the brain ventricles are mainly bipolar and contain granular vesicles of various size. The bulb-like terminal of their ventricular dendrites bears several stereocilia and contains basal bodies as well as mitochondria. Basal bodies emit cilia of the 9+0-type. Cilia may arise from the basal body and accessory basal body as well. The axons run ependymofugally and enter--partially cross--the periventricular synaptic zones. No neurohemal terminals similar to those formed by spinal CSF-contacting neurons of higher vertebrates have been found in the hagfish. We suppose that CSF-contacting neurons transform CSF-mediated non-synaptic information taken up by their ventricular dendrites to synaptic one. A light-sensitive role for some (preoptic?) groups of CSF-contacting neurons cannot be excluded.  相似文献   

8.
A computational fluid dynamics (CFD) model of the cerebrospinal fluid system was constructed based on a simplified geometry of the brain ventricles and their connecting pathways. The flow is driven by a prescribed sinusoidal motion of the third ventricle lateral walls, with all other boundaries being rigid. The pressure propagation between the third and lateral ventricles was examined and compared to data obtained from a similar geometry with a stenosed aqueduct. It could be shown that the pressure amplitude in the lateral ventricles increases in the presence of aqueduct stenosis. No difference in phase shift between the motion of the third ventricle walls and the pressure in the lateral ventricles because of the aqueduct stenosis could be observed. It is deduced that CFD can be used to analyze the pressure propagation and its phase shift relative to the ventricle wall motion. It is further deduced that only models that take into account the coupling between ventricles, which feature a representation of the original geometry that is as accurate as possible and which represent the ventricle boundary motion realistically, should be used to make quantitative statements on flow and pressure in the ventricular space.  相似文献   

9.
This paper describes a method for infusing chronically substances into the cranial cavity of free-living rainbow trout Oncorhynchus mykiss for several weeks. The efficacy of the method was established by examining the penetration of radioactively labelled phosphorothioate oligodeoxynucleotides and a blue-coloured dye, xylene cyanole, into brain tissue. No problems with pump patency were encountered, and the contents of the pump diffused consistently throughout the brain ventricular system, including the anterior lateral ventricles of the olfactory lobes, the third ventricle under the optic tecta and into the hypothalamus, including the lateral ventricular recesses. Autoradiographic examination of frozen sections demonstrated variable penetration of labelled probe into brain interstitium to a depth of up to approximately 200 μm. At the end of the experiment, >50% of radioactivity within brain tissue was shown to be of similar size to intact, labelled oligodeoxynucleotides.  相似文献   

10.
The sites of synthesis of transthyretin in the brain were investigated using in situ hybridization with [35S]-labeled recombinant cDNA probes specific for transthyretin mRNA. Autoradiography of hybridized coronal sections of rat brain revealed specific cellular localization of transthyretin mRNA in choroid plexus epithelial cells of the lateral, third, and fourth ventricles. Transferrin mRNA was also investigated and, in contrast to transthyretin mRNA, was localized mainly in the lateral ventricles. Our results indicate that substantial synthesis of transthyretin and transferrin mRNA may occur in the choroid plexus.  相似文献   

11.
We mapped the dynamic distribution of fluoro-gold (FG) within rat brain following intracerebroventricular (icv) injection into the lateral ventricle and observed its interrelation with neural nitric oxide synthase (nNOS) using FG fluorescent microphotography combined with nNOS immunohistochemistry. We also detected the amount of icv administered FG entering the peripheral circulation using a fluorescence microplate assay. The degree of periventricular penetration of FG was significantly increased over time. At 2 min after icv injection, FG primarily labeled the choroid plexus in the lateral and third ventricles, with limited penetration into the ependyma and the subependyma of the same ventricles. Some FG/nNOS-double labeled cerebrospinal fluid-contacting neurons were observed in these ventricles as well. At 15 and 30 min, FG penetrated mainly into forebrain ventricular organs and parenchymal structures. Many FG/nNOS double labeled neurons were found at each of these sites. In addition, at 30 min intense FG labeling was found in the hypophysis, while limited periventricular penetration of FG was detected in the hindbrain circumventricular areas. In the peripheral circulation, a low concentration of FG was detected 2 min after icv injection. The concentration increased slowly, peaked at 20 min, then gradually decreased until the end of the experiment at 30 min. These findings indicate that dynamic penetration of icv administrated agents into the periventricular tissues and peripheral circulation should be considered when designing icv experiments.  相似文献   

12.
Summary The development of the adrenergic sympathetic innervation of the rabbit choroid plexus system was studied prenatally and up to two months after birth by a combination of fluorescence histochemistry (formaldehyde and glyoxylic acid methods) and quantitative enzymatic determinations of noradrenaline. The first signs of adrenergic nerves are found in the plexus of the third ventricle within the first day after birth. Fluorescent fibres subsequently appear in the choroid plexuses of the lateral ventricles (five days post partum) and the fourth ventricle (two weeks post partum). During the following development nerve fibres grow along blood vessels to form a plexus located between small vessels and the overlying epithelium. The nerve plexus, with varicose axon terminals, is fully developed at three weeks post partum, and maturation is then established by an increase in the number of terminals within the network of axons. There is a good agreement between (a) the development of the fluorescent nerves and histochemically visible adrenergic innervation, and (b) the tissue level of noradrenaline in the various choroid plexuses. Against the background of available information on the development of the secretory functions in choroid plexus, it is concluded that possibilities for a sympathetic neurogenic influence on the formation of cerebrospinal fluid exist already a few weeks after birth.  相似文献   

13.
We mapped the dynamic distribution of fluoro-gold (FG) within rat brain following intracerebroventricular (icv) injection into the lateral ventricle and observed its interrelation with neural nitric oxide synthase (nNOS) using FG fluorescent microphotography combined with nNOS immunohistochemistry. We also detected the amount of icv administered FG entering the peripheral circulation using a fluorescence microplate assay. The degree of periventricular penetration of FG was significantly increased over time. At 2 min after icv injection, FG primarily labeled the choroid plexus in the lateral and third ventricles, with limited penetration into the ependyma and the subependyma of the same ventricles. Some FG/nNOS-double labeled cerebrospinal fluid-contacting neurons were observed in these ventricles as well. At 15 and 30 min, FG penetrated mainly into forebrain ventricular organs and parenchymal structures. Many FG/nNOS double labeled neurons were found at each of these sites. In addition, at 30 min intense FG labeling was found in the hypophysis, while limited periventricular penetration of FG was detected in the hindbrain circumventricular areas. In the peripheral circulation, a low concentration of FG was detected 2 min after icv injection. The concentration increased slowly, peaked at 20 min, then gradually decreased until the end of the experiment at 30 min. These findings indicate that dynamic penetration of icv administrated agents into the periventricular tissues and peripheral circulation should be considered when designing icv experiments.  相似文献   

14.
Absorption, accumulation and release of N-Dansyl-L-phenylalanine (DPA) through the ependyma, plexus choriodei and brain parenchyma after intraventricular and intracisternal injection was examined at different postinjection intervals by fluorescence microscopy. The following results were obtained: 1. After intraventricular injection, DPA is rapidly absorbed from the ependyma and plexus choriodei in all ventricles and subsequently disappears from the various points of the ventricles at different times. DPA is no longer evident in the ependyma after 40 min and the plexus after 90 min. Aborption and storage occur primarily in the dopaminergic centers of the brain. This stage begins 5 min p.i. attains a maximum after 40 min and is maintained up to 180 min p.i. 2. If DPA is administered intracisternally, fluorescence is initially restricted to the ependyma and choroid plexus of the fourth ventricle and to the wall of the aquaeduct. Only at 5-10 min p.i. are rostral ventricular portions labelled. Passage of the amino acid out of the ventricle only occurs to a limited extent. 40 min after intracisternal injection, DPA is no longer demonstrable in the ependyma and plexus or brain parenchyma. 3. Intrathecally administered DPA appears in the periglomerular tubules of the kidney as well 2.5 min p.i. and is stored there for up to 40 min. The kidney medulla remains free of fluorescence. 4. DPA injected into the CSF is protein-bound.  相似文献   

15.
Summary Surface features of the ependymal lining of the third ventricle in mature male and female monkeys have been investigated with scanning electron microscopy (SEM). Broad aspects of third ventricular morphology from three species of monkey are similar regardless of sex. The lateral walls are heavily ciliated whereas the ventral floor and most ventral parts of the lateral walls are not. Clumps of cilia on the lateral walls are so dense that underlying surface details are usually obscured. There is a transition zone between the ciliated lateral wall and nonciliated ventral floor. The floor and lower part of the lateral walls of the third ventricle exhibit a characteristic polygonal pattern upon which surface specializations such as microvilli, blebs and polymorphous membrane protrusions are superimposed. Ependyma of the choroid plexus of the third ventricle also display membrane specializations. Supraependymal cells are more visible in nonciliated regions.Supported by USPHS Grants RR-05432, GM-16598 and HD-10010 from the National Institutes of Health and GSRF 171 funds from the University of Washington Graduate School. Portions of this work have been reported previously in abstract form in Anat. Rec. 175, 294 (1973) (before the 86th annual session of the American Association of Anatomists, New York, N.Y., April, 1973)  相似文献   

16.
Summary The adrenergic nerve supply of the choroid plexus in all four ventricles was studied by the Falck-Hillarp histofluorescence technique in nine different species, and the noradrenaline concentration in whole plexus tissue was determined by a radioenzymatic method. The nerve density was usually in the order: third > lateral > fourth ventricular plexuses. Plexuses of the pig and cat possessed the largest number of nerves; the innervation was intermediary in the baboon, guinea-pig, rat, rabbit and hamster, whereas only few fluorescent nerves were found in the cow and mouse plexuses. Sympathetic denervation showed an ipsilateral supply from the superior cervical ganglia to the lateral plexuses and a mixed contribution to the midline plexuses. The total noradrenaline concentration varied between 0.10 and 0.73 ng per mg protein.  相似文献   

17.
A J Dunn  R W Hurd 《Peptides》1986,7(4):651-657
Intracerebroventricular but not parenteral application of ACTH has been shown to elicit excessive grooming behavior in rats and mice. This behavior is elicited by administration of ACTH into the lateral, third, or fourth ventricles. Plugging of the cerebral aqueduct with cold cream fails to prevent grooming in response to lateral ventricle injection of ACTH. However, cold cream plugs in the third ventricle can prevent the subsequent induction of grooming behavior by lateral ventricle injection of ACTH, but only when the plugs are located in the anterior ventral third ventricle in the region of the organum vasculosum laminae terminalis (OVLT) and median eminence. These data suggest the anterior ventral third ventricle as the periventricular site of action of ACTH in eliciting excessive grooming, although it is possible that peptides taken up in this area are transported to other regions to elicit the behavioral response.  相似文献   

18.
19.
Distribution of transferrin synthesis in brain and other tissues in the rat   总被引:7,自引:0,他引:7  
Levels of transferrin mRNA were measured by hybridization to transferrin cDNA in extracts from various areas of rat brain and other tissues. The highest concentrations of transferrin mRNA were found in the liver and the choroid plexus of the lateral and third ventricles. Lower concentrations were observed in the medulla and thalamus, choroid plexus of the fourth ventricle, cortex, hypothalamus, cerebellum, pituitary, testis, placenta, stomach, spleen, kidney, muscle, and heart. Yolk sac, small intestine, and adrenal glands did not contain detectable transferrin mRNA levels. The size of transferrin mRNA was the same in liver, brain, and testis. Upon incubation of choroid plexus pieces with [14C]leucine in vitro, about 4% of the radioactive protein secreted into the medium was found to be transferrin. Together with previous data (Dickson, P.W., Howlett, G.J., and Schreiber, G. (1985) J. Biol. Chem. 260, 8214-8219; Dickson, P.W., Aldred, A.R., Marley, P.D., Bannister, D., and Schreiber (1986) J. Biol. Chem. 261, 3475-3478) the obtained data suggest that the choroid plexus plays a role in maintenance of homeostasis in the microenvironment of the central nervous system by synthesizing and secreting plasma proteins.  相似文献   

20.
Summary A study on the localization of fetal and neonatal brain macrophages of mice from embryonic day 10 (E10) to postnatal day 21 (P21) was carried out immunohistochemically using a monoclonal antibody against a macrophage differentiation antigen (Mac-1) and the labeled avidin-biotin technique. In the central nervous system, the macrophages recognized first were mainly located in the choroid plexuses of the fourth and lateral ventricles at E14. Their number increased at E17–P3 and gradually decreased thereafter. In the cerebral parenchyma, a few macrophages appeared at E14 in the matrix cell layer. They were also detected in the migrating zone at E15, E17 and in the cortical plate at E19. Mapping of positive cells at the stage of neuroblast formation (E15, E17, E19) disclosed the precise distribution of cerebral macrophages. The macrophages that appeared first in the choroid plexuses at E15 may be derived from the subarachnoid vessels, which extend into the stroma of the choroid plexuses when the matrix cell layer invaginates into the lateral ventricle to form the choroid plexuses. Almost all of the macrophages recognized in the cerebral parenchyma disappeared at P9 when the cytoarchitecture seemed to be completed. In the cerebellum, which develops later than the cerebrum, macrophages appeared after birth and were located mainly in the internal granular layer. The brain macrophages always appeared in the regions where cell proliferation and brain remodeling are most active at each stage. These findings suggest that fetal and neonatal brain macrophages may play an important role in scavenging degenerated cells and cell debris during histogenesis of the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号