首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: To assess four carbohydrates for the protective effect against Lactobacillus helveticus cells inactivation during vacuum drying, and to study the effect of selected carbohydrate on changes of inactivation kinetics. METHODS AND RESULTS: Early stationary phase L. helveticus cells grown in MRS media were recovered from fermentation broth, washed with PBS buffer (pH 7.0), and then mixed with different concentrations of four carbohydrates, namely lactose, sorbitol, inulin, and xanthan gum. Cells were dried in a vacuum drier at 100 mbar, 43 degrees C for 12 h. Only cells with 1% sorbitol addition showed higher survival (18%) over cells without added carbohydrate (8%). Using in situ microbalance technique whereby cell weight during vacuum drying was continuously monitored via precision balances integrated into the vacuum chamber, drying and inactivation kinetics of cells and cells mixed with sorbitol were established. CONCLUSION: Survival of L. helveticus during the vacuum drying could be improved by the addition of optimal concentration of 1% sorbitol. Addition of sorbitol did not cause drastic changes in drying rate, water content and water activity of samples. The protection mechanisms of sorbitol seemed not to be due to a direct physical effect, which could be related to drying rate. SIGNIFICANCE AND IMPACT OF THE STUDY: The increase in survival of cells after vacuum drying by the addition of a protective carbohydrate may provide an alternative mean to preserve starter cultures at a higher level of activity.  相似文献   

2.
Aims:  To examine changes in membrane fatty acid profile attributed to the physiological adaptation of Lactobacillus helveticus during vacuum drying.
Methods and Results:  The viability and membrane integrity of the cells after vacuum drying were measured by plate counts and DNA fluorescence dyes. The physiological adaptation of cells dried in the presence of sorbitol was observed by determining changes in membrane fatty acid composition using gas chromatography. Results showed that viability and membrane integrity of Lact. helveticus cells increased when drying in the presence of sorbitol. The occurrence of the very low melting point polyunsaturated fatty acids linoleic and arachidonic acid was observed in cells dried in the presence of sorbitol.
Conclusions:  The physiological adaptation of cells occurred with cell membrane of Lact. helveticus during vacuum drying of cells in the presence of sorbitol.
Significance and Impact of the Study:  The study showed that physiological adaptation with membrane of the cells occurred during the drying process. The insight implies that instead of viability improvement of dried cells by the conventional stress induction during cultivation, the induction may be exercised thereafter without compromising growth of the cells.  相似文献   

3.
The preservation of lactic acid starter cultures by drying are of increased interest. A further improvement of cell viability is, however, still needed, and the insight into inactivation mechanisms of the cells is a prerequisite. In this present work, we review the inactivation mechanisms of lactic acid starter cultures during drying which are not yet completely understood. Inactivation is not only induced by dehydration inactivation but also by thermal- and cryo-injuries depending on the drying processes employed. The cell membrane has been reported as a major site of damage during drying or rehydration where transitions of membrane phases occur. Some drying processes, such as freeze drying or spray drying, involve subzero or very high temperatures. These physical conditions pose additional stresses to cells during the drying processes. Injuries of cells subjected to freezing temperatures may be due to the high electrolyte concentration (solution effect) or intracellular ice formation, depending on the cooling rate. High temperatures affect most essential cellular components. It is difficult to identify a critical component, although ribosomal functionality is speculated as the primary reason. The activation during storage is mainly due to membrane lipid oxidation, while the storage conditions such as temperature moisture content of the dried starter cultures are important factors.  相似文献   

4.
Dried microorganisms are particularly resistant to high hydrostatic pressure effects. However, exposure to high pressures of nitrogen proved to be effective in inactivating dried yeasts. In this study, we tried to elucidate this mechanism on Saccharomyces cerevisiae. High-pressure treatments were performed using different inert gases at 150 MPa and 25 degrees C with holding time values up to 12 months. The influence of cell hydration was also investigated. For fully hydrated cells, pressurized gases had little specific effect: cell inactivation was mainly due to compression effects. However, dried cells were sensitive to high pressure of gases. In this latter case, two inactivation kinetics were observed. For holding time up to 1 h, the inactivation rate increased to 4 log and was linked to a loss of membrane integrity and the presence of damage on the cell wall. In such case cell inactivation would be due to gas sorption and desorption phenomena which would rupture dried cells during a fast pressure release. Gas sorption would occur in cell lipid phases. For longer holding times, the inactivation rate increased more slightly due to compression effects and/or to a slower gas sorption. Water therefore played a key role in cell sensitivity to fast gas pressure release. Two hypotheses were proposed to explain this phenomenon: the rigidity of vitrified dried cells and the presence of glassy solid phases which would favor intracellular gas expansion. Our results showed that dried microorganisms can be ruptured and inactivated by a fast pressure release with gases.  相似文献   

5.
6.
AIMS: Inactivation and sublethal injury of Lactobacillus plantarum at different pulsed electric field (PEF) strengths and total energy inputs were investigated to differentiate reversible and irreversible impacts on cell functionality. METHODS AND RESULTS: Lactobacillus plantarum was treated with PEF in model beer (MB) to determine critical values of field strength and energy input for cell inactivation. Below critical values, metabolic activity and membrane integrity were initially reduced without loss of viability. Above critical values, however, irreversible cell damage occurred. Presence of nisin or hop extract, during PEF treatment, resulted in an additional reduction of cell viability by 1;5 log cycles. Also, addition of the hop extract resulted in an additional two log cycles of sublethal injury. Partial reversibility of membrane damage was observed using propidium iodide (PI) uptake and staining. Inoculated MB containing hops was stored after PEF to evaluate the efficacy of such treatment for beer preservation. CONCLUSION: Cells were inactivated only above critical values of 13 kV x cm(-1) and 64 kJ x kg(-1); below these values cell damage was reversible. Storage experiments revealed that surviving cells were killed after 15 h storage in MB containing hops. SIGNIFICANCE AND IMPACT OF THE STUDY: Both reversible and irreversible cell damage due to PEF treatment was detected, depending on specific treatment conditions. The combination of PEF and hop addition is a promising nonthermal method of preservation for beer.  相似文献   

7.
Pseudomonas fluorescens S11:P:12 (NRRL B-21133) is a biological control agent able to suppress several potato diseases and sprouting. Notably, it produces a polysaccharide during liquid cultivation, and the objective of this work was to determine the role of this material in the bio-control process. First, the polysaccharide was isolated, purified and identified as marginalan, which accumulated to ~3.3 g/L in cultures. The bioactivity of isolated marginalan applied alone or in combination with washed cells of strain S11:P:12 was tested in potato bioassays of dry rot and pink rot suppressiveness and sprout inhibition. Since the formulation and storage of a dried biocontrol product is preferred for commercial use, the impact of marginalan on cell survival during drying and storage was also studied. Washed bacteria formulated with 0–6.6 g/L polysaccharide were either applied to Hyflo granules, then slowly dried for 24 h with airflow at 50–60% relative humidity, or in 1-µL droplets placed in replicate wells of a micro-plate, then quickly dried for 1 h in a biohazard hood. Both Hyflo and micro-plate dry storage results indicated that marginalan significantly reduced cell death after drying, such that the final stable viable cell density was 2.5–5 orders of magnitude greater, respectively, than if no marginalan were included with cells. Marginalan had no significant impact on disease or sprout suppression by strain S11:P:12, and its main benefit to biocontrol was viable cell preservation during drying and storage. When marginalan was formulated with other selected P. fluorescens strains, its benefits to drying and storage survival were again evident (especially after 4°C instead of 25°C storage), but its effects were more subtle than for strain S11:P:12, and dry rot suppression was not impacted.  相似文献   

8.
Oxidative damage originating from uncontrolled metabolism is thought to be responsible for the sensitivity to drying in recalcitrant seeds. This study compares the responses of respiration to drying and the loss of membrane integrity in isolated axes and cotyledons of the recalcitrant seeds of Castanea sativa Mill. Electron spin resonance spectroscopy of two nitroxide spin probes introduced into the seed tissues was used to assess the cytoplasmic viscosity and the membrane permeability during fast and slow drying. Drying rates had not effect on the rise in viscosity in axes and cotyledons. In both tissues, the cytoplasmic viscosity during drying remained constant at 0.2 Poise until 1.6 g water/g DW (g/g), thereafter it increased exponentially. Axes were found to be more tolerant to drying than cotyledons: membranes showed minor changes in their permeability during drying and 50% viability was retained in dried axes containing 0.12 g/g. In contrast, plasma membranes in cotyledons lost their integrity below 0.6 g/g, regardless of the drying rate. Drying axes and cotyledons exhibited contrasting responses of their metabolism to drying. At the onset of drying, the rates of O2 uptake declined rapidly in drying axes. However, respiration in drying cotyledons sequentially increased to c. 1.4-fold at 1.2 g/g then decreased concomitantly with the loss of membrane integrity. The respiratory quotients (CO2 output/O2 input) remained constant around 0.9 until the loss of membrane integrity, then rose to 2.8. As a symptom of mitochondrial injury, the levels of reduction of cytochromes were assessed in situ in fresh and dried cotyledons using light spectroscopy. The levels of reduced cytochrome c and aa3 were lower in dried C. sativa cotyledons than in dried orthodox cotyledons of cowpea, indicating that a disruption in the electron transport chains may have occurred during drying. Desiccation sensitivity in recalcitrant seeds may be due to the inability to actively depress their metabolism during drying, thereby increasing the chances of initiating peroxidative damage during drying.Key words: Castanea satia, membrane permeability, recalcitrant seed, respiration, viscosity.   相似文献   

9.
P. TEIXEIRA, H. CASTRO AND R. KIRBY. 1996. Membrane fatty acids of Lactobacillus bulgaricus were analysed by gas-liquid chromatography before and after spray drying. The ratio unsaturated/saturated fatty acids decreased following spray drying, indicating the formation of lesions in cellular lipid-containing structures. The same method was used to analyse membrane lipids of Lact. bulgaricus during storage. Similarly the ratio of unsaturated/saturated fatty acids in dried cells decreased further during storage in air, presenting evidence of lipid oxidation after prolonged storage. The mechanisms of cell death during storage in the dried state are still unknown, but from these results and those presented in the literature, it seems evident that lipid oxidation and survival during storage may be related.  相似文献   

10.
Dried microorganisms are particularly resistant to high hydrostatic pressure effects. In this study, the survival of Saccharomyces cerevisiae was studied under pressure applied in different ways. Original processes and devices were purposely developed in our laboratory for long-term pressurization. Dried and wet yeast powders were submitted to high-pressure treatments (100-150 MPa for 24-144 h at 25 degrees C) through liquid media or inert gas. These powders were also pressurized after being vacuum-packed. In the case of wet yeasts, the pressurization procedure had little influence on the inactivation rate. In this case, inactivations were mainly due to hydrostatic pressure effects. Conversely, in the case of dried yeasts, inactivation was highly dependent on the treatment scheme. No mortality was observed when dried cells were pressurized in a non-aqueous liquid medium, but when nitrogen gas was used as the pressure-transmitting fluid, the inactivation rate was found to be between 1.5 and 2 log for the same pressure level and holding time. Several hypotheses were formulated to explain this phenomenon: the thermal effects induced by the pressure variations, the drying resulting from the gas pressure release and the sorption and desorption of the gas in cells. The highest inactivation rates were obtained with vacuum-packed dried yeasts. In this case, cell death occurred during the pressurization step and was induced by shear forces. Our results show that the mechanisms at the origin of cell death under pressure are strongly dependent on the nature of the pressure-transmitting medium and the hydration of microorganisms.  相似文献   

11.
AIMS: The aim of the present work was to evaluate the enzymatic potential manifested by aminopeptidase activity of different thermophilic Lactobacillus biotypes and to measure the influence of cell growth phase on enzyme expression. METHODS AND RESULTS: The activities were evaluated by the hydrolysis of beta-naphthylamide substrates for both whole and mechanically disrupted cells of L. helveticus, L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis strains, collected from both the exponential and the stationary growth phase. In general, activities were higher for cells in the exponential rather than in the stationary phase and the disrupted cells showed higher activities than the whole cells. The highest activity expressed by all strains corresponded to X-prolyl-dipeptidyl aminopeptidase while a moderate activity was observed towards Arg-betaNa, Lys-betaNa and Leu-betaNa. The lowest activity was observed for Pro-betaNa. CONCLUSIONS: It may be inferred that the cell structure and the cell physiology are crucial to define the level of efficiency of expression for aminopeptidase activity. The two species may be characterized by a different enzymatic system that hydrolyses N-terminal leucine. SIGNIFICANCE AND IMPACT OF THE STUDY: The differences of peptidase activities in L. helveticus and L. delbrueckii species acquires an importance to comprehend their role in the biochemical events occurring in cheese ripening.  相似文献   

12.
AIM: This work determines the efficiency of trehalose on the preservation by heat or osmotic drying of a strain of Lactobacillus delbrueckii ssp. bulgaricus. Cell recovery at different trehalose concentrations during drying correlated with the surface properties and osmotic response of cells after rehydration. METHODS AND RESULTS: Bacteria were dried in the presence of glycerol, trehalose, sucrose at 70 degrees C and at 20 degrees C. Trehalose attenuates the loss of viability at 0.25 m. At this concentration, the osmotic response and zeta potential of the bacteria were comparable with the nondried ones. CONCLUSIONS: Trehalose diminishes significantly the damage produced by dehydration both when the bacteria are dried by heating or subjected to osmotic dehydration. This effect appears related to the preservation of the permeability to water and the surface potential of the bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Dehydration occurring during heating or during osmosis appears to have similar effects. As dehydration-induced damage is in correlation with osmotic response recovery and is hindered or buffered by the presence of trehalose, it may be related to water eliminated from biological structures involved in water permeation.  相似文献   

13.
Aims: The survival rate of freeze‐dried cultures is not enough information for technological applications of micro‐organisms. There could be serious metabolic/structural damage in the survivors, leading to a delay time that can jeopardize the design of a rapid biochemical oxygen demand (BOD) metabolic‐based bioassay. Therefore, we will study the metabolic activity (as ferricyanide reduction activity) and the survival rate (as colony‐forming units, CFU) of different Klebsiella pneumoniae freeze‐dried cultures looking for stable metabolic conditions after 35 days of storage. Method and Results: Here, we tried several simple freeze‐drying processes of Kl. pneumoniae. Electrochemical measurements of ferrocyanide and survival rates obtained with the different freeze‐dried cultures were used to choose the best freeze‐drying process that leads to a rapid metabolic‐based bioassay. Conclusions: The use of milk plus monosodium glutamate was the best choice to obtain a Kl. pneumoniae freeze‐dried culture with metabolic stable conditions after storage at ?20°C without the need of vacuum storage and ready to use after 20 min of rehydration. We also demonstrate that the viability and the metabolic activity are not always directly correlated. Significance and Impact of the Study: This study shows that the use of this Kl. pneumoniae freeze‐dried culture is appropriate for the design of a rapid BOD bioassay.  相似文献   

14.
Preservation of Bacteria by Circulating-Gas Freeze Drying   总被引:2,自引:1,他引:1       下载免费PDF全文
Water-washed Serratia marcescens and Escherichia coli were freeze dried in a circulating-gas system at atmospheric pressure. This convective procedure resulted in a substantially higher survival of organisms than could be obtained by the vacuum method of freeze drying. There was little or no decrease in cell viability during convective drying when the residual moisture content was 15% or higher. Below this level, survival declined with decreasing moisture content. A detailed comparison of the convective and vacuum methods indicated that the advantage gained by freeze drying bacteria in air accrues in the early period of sublimation, at which time cells were found to be sensitive to vacuum drying but insensitive to air drying. An explanation for this difference is proposed, based upon the kinetics of water removal in the two processes. In brief, it is suggested that the convective method permits samples to be dried more uniformly; and regional over-drying, which may be deleterious even if transient, is thus avoided in achieving the optimal level of moisture.  相似文献   

15.
Aims:  To investigate the microbicidal mechanisms of high-power microwave (2·0 kW) irradiation on Bacillus subtilis and to determine the effect of this procedure on the ultrastructure of the cell wall.
Methods and Results:  We performed viability test, examined cells using transmission electron microscopy (TEM), and measured the release of intracellular proteins and nucleic acids. The inactivation rate of B. subtilis by 2·0-kW microwave irradiation was higher than that of a domestic microwave (0·5 kW). Few proteins were released from either microwaved or boiled cells. However, the leakage of nucleic acids from 2·0-kW-microwaved cells was significantly higher than that of 0·5-kW-microwaved or boiled cells. Therefore, we examined ultrastructural alterations of microwaved or boiled cells to analyse the pattern of release of cytoplasmic contents. Although boiled cells did not show any ultrastructural changes on TEM, 2·0-kW-microwaved cells showed disruption of the cell wall.
Conclusion:  The microbicidal mechanisms of 2·0-kW microwave irradiation include damage to the microbial cell wall, breakage of the genomic DNA, and thermal coagulation of cytoplasmic proteins.
Significance and Impact of the Study:  TEM images showed that the cytoplasmic protein aggregation and cell envelope damage by microwave irradiation were different from the ultrastructural changes observed after boiling.  相似文献   

16.
Organisms that can withstand anhydrobiosis possess the unique ability to temporarily and reversibly suspend their metabolism for the periods when they live in a dehydrated state. However, the mechanisms underlying the cell’s ability to tolerate dehydration are far from being fully understood. The objective of this study was to highlight, for the first time, the cellular damage to Yarrowia lipolytica as a result of dehydration induced by drying/rehydration and freezing/thawing. Cellular response was evaluated through cell cultivability determined by plate counts, esterase activity and membrane integrity assessed by flow cytometry, and the biochemical composition of cells as determined by FT-IR spectroscopy. The effects of the harvesting time (in the log or stationary phase) and of the addition of a protective molecule, trehalose, were investigated. All freshly harvested cells exhibited esterase activity and no alteration of membrane integrity. Cells freshly harvested in the stationary phase presented spectral contributions suggesting lower nucleic acid content and thicker cell walls, as well as longer lipid chains than cells harvested in the log phase. Moreover, it was found that drying/rehydration induced cell plasma membrane permeabilization, loss of esterase activity with concomitant protein denaturation, wall damage and oxidation of nucleic acids. Plasma membrane permeabilization and loss of esterase activity could be reduced by harvesting in the stationary phase and/or with trehalose addition. Protein denaturation and wall damage could be reduced by harvesting in the stationary phase. In addition, it was shown that measurements of loss of membrane integrity and preservation of esterase activity were suitable indicators of loss and preservation of cultivability, respectively. Conversely, no clear effect of freezing/thawing could be observed, probably because of the favorable operating conditions applied. These results give insights into Y. lipolytica mechanisms of cellular response to dehydration and provide a basis to better understand its ability to tolerate anhydrobiosis.  相似文献   

17.
P. TEIXEIRA, H. CASTRO AND R. KIRBY. 1995. Spray drying and freeze drying as methods for concentration of Lactobacillus bulgaricus starter cultures were compared in terms of viability, lag phase until onset of pH decrease and total acid production. For the experimental conditions used, no significant differences were detected between the methods.
The effect of spray drying on the cell membrane of Lactobacillus bulgaricus was studied. Five separate methods were used to study the theory that spray drying causes cell membrane damage; three relating to leakage of intracellular components from the cell into the surrounding environment (260 and 280 nm absorbing materials, potassium ions and proteins); and two relating to increased cell permeability (increased sensitivity to NaCl and increased permeability to o -nitrophenyl-β-D-galactopyranoside (ONPG). Partial loss of some cytoplasmic material from the damaged cells was observed. The dried cells also became sensitive to NaCl and permeable to ONPG. Heat shock increased the survival of exponential cells as compared to controls but did not result in normal levels found with unshocked stationary phase cells. Heat shock had no effect on stationary phase cells. Different rehydration methods and media were investigated: slow rehydration increased survival.  相似文献   

18.
The mechanism of dehydration inactivation of Lactobacillus plantarum cells after vacuum-drying above saturated salt solutions was studied. The method used is based on the hypothesis that DNase diffuses into cells with damaged cell membranes/walls and hydrolyses the intracellular DNA. Intact, undamaged cells and cells inactivated by either dehydration or heat treatent were incubated in the presence of DNase. The release of DNA hydrolysis products into the incubation medium was measured. It was shown that dehydration inactivation of L. plantarum, but not thermal inactivation, was associated with clear evidence of membrane damage. The residual glucose-fermenting activity of the dehydrated cells related to the release of hydrolysed DNA in the medium, but there was no such relationship with heat-treated cells. Addition of sorbitol to cells before dehydration increased the residual glucose-fermenting activity after drying and this was associated with a reduced rate of DNA hydrolysis. It is concluded that cell wall and/or cell membrane damage is an important mechanism of dehydration inactivation, but that thermal inactivation (up to 60°C) occurs by a different mechanism.Correspondence to: K. van't Riet  相似文献   

19.
The effect of sucrose, maltodextrin and skim milk on survival of L. bulgaricus after drying was studied. Survival could be improved from 0.01% for cells that were dried in the absence of protectants to 7.8% for cells dried in a mixture of sucrose and maltodextrin. Fourier transform infrared spectroscopy (FTIR) was used to study the effect of the protectants on the overall protein secondary structure and thermophysical properties of the dried cells. Sucrose, maltodextrin and skim milk were found to have minor effects on the membrane phase behavior and the overall protein secondary structure of the dried cells. FTIR was also used to show that the air-dried cell/protectant solutions formed a glassy state at ambient temperature. 1-Palmitoyl 2-oleoyl phosphatidyl choline (POPC) was used in order to determine if sucrose and maltodextrin have the ability to interact with phospholipids during drying. In addition, the glass transition temperature and strength of hydrogen bonds in the glassy state were studied using this model system. Studies using poly-L-lysine were done in order to determine if sucrose and maltodextrin are able to stabilize protein structure during drying. As expected, sucrose depressed the membrane phase transition temperature (Tm) of POPC in the dried state and prevented conformational changes of poly-L-lysine during drying. Maltodextrin, however, did not depress the Tm of dried POPC and was less effective in preventing conformational changes of poly-L-lysine during drying. We suggest that when cells are dried in the presence of sucrose and maltodextrin, sucrose functions by directly interacting with biomolecules, whereas maltodextrin functions as an osmotically inactive bulking compound causing spacing of the cells and strengthening of the glassy matrix.  相似文献   

20.
Atmospheric cold plasma (ACP) is a promising nonthermal technology effective against a wide range of pathogenic microorganisms. Reactive oxygen species (ROS) play a crucial inactivation role when air or other oxygen-containing gases are used. With strong oxidative stress, cells can be damaged by lipid peroxidation, enzyme inactivation, and DNA cleavage. Identification of ROS and an understanding of their role are important for advancing ACP applications for a range of complex microbiological issues. In this study, the inactivation efficacy of in-package high-voltage (80 kV [root mean square]) ACP (HVACP) and the role of intracellular ROS were investigated. Two mechanisms of inactivation were observed in which reactive species were found to either react primarily with the cell envelope or damage intracellular components. Escherichia coli was inactivated mainly by cell leakage and low-level DNA damage. Conversely, Staphylococcus aureus was mainly inactivated by intracellular damage, with significantly higher levels of intracellular ROS observed and little envelope damage. However, for both bacteria studied, increasing treatment time had a positive effect on the intracellular ROS levels generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号