首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously described a 5'-3' exonuclease required for recombination in vitro between linear DNA molecules with overlapping homologous ends. This exonuclease, referred to as exonuclease I (Exo I), has been purified more than 300-fold from vegetatively grown cells and copurifies with a 42-kDa polypeptide. The activity is nonprocessive and acts preferentially on double-stranded DNA. The biochemical properties are quite similar to those of Schizosaccharomyces pombe Exo I. Extracts prepared from cells containing a mutation of the Saccharomyces cerevisiae EXO1 gene, a homolog of S. pombe exo1, had decreased in vitro recombination activity and when fractionated were found to lack the peak of activity corresponding to the 5'-3' exonuclease. The role of EXO1 on recombination in vivo was determined by measuring the rate of recombination in an exo1 strain containing a direct duplication of mutant ade2 genes and was reduced sixfold. These results indicate that EXO1 is required for recombination in vivo and in vitro in addition to its previously identified role in mismatch repair.  相似文献   

2.
P Szankasi  G R Smith 《Biochemistry》1992,31(29):6769-6773
We have purified to near homogeneity a DNA exonuclease from meiotic cells of Schizosaccharomyces pombe. The enzyme, designated exonuclease II (ExoII), had an apparent molecular weight of 134,000 and was abundant in the cell. It specifically degraded single-stranded DNA in the 5'----3' direction with an apparent Km for 5' DNA ends of 3.6 x 10(-11) M and produced 5' deoxynucleoside monophosphates. Its mode of degradation is similar to that of the RecJ protein from Escherichia coli; ExoII may, therefore, be involved in genetic recombination and DNA damage repair.  相似文献   

3.
Exonuclease I was originally identified as a 5' --> 3' deoxyribonuclease present in fractionated extracts of Schizosaccharomyces pombe and Saccharomyces cerevisiae. Genetic analysis of exo1 mutants of both yeasts revealed no major defect in meiosis, suggesting that exonuclease I is unlikely to be the primary activity that processes meiosis-specific double-strand breaks (DSBs). We report here that exo1 mutants of S. cerevisiae exhibit subtle but complex defects in meiosis. Diploids containing a homozygous deletion of EXO1 show decreased spore viability associated with an increase in meiosis I nondisjunction, while intergenic recombination is reduced about twofold. Exo1p functions in the same pathway as Msh5p for intergenic recombination. The length of heteroduplex tracts within the HIS4 gene is unaffected by the exo1 mutation. These results suggest that Exo1p is unlikely to play a major role in processing DSBs to form single-stranded tails at HIS4, but instead appears to promote crossing over to ensure disjunction of homologous chromosomes. In addition, our data indicate that exonuclease I may have a minor role in the correction of large DNA mismatches that occur in heteroduplex DNA during meiotic recombination at the HIS4 locus.  相似文献   

4.
DNA polymerase was purified from soybean (Glycine max) chloroplasts that were actively replicating DNA. The main form (form I) of the enzyme was associated with a low level of 3[prime] to 5[prime] exonuclease activity throughout purification, although the ratio of exonuclease to polymerase activity decreased with each successive purification step. A second form (form II) of DNA polymerase, which elutes from DEAE-cellulose at a higher salt concentration than form I, was devoid of any exonuclease activity. To assess the potential function of the 3[prime] to 5[prime] exonuclease in proofreading, the fidelity of deoxynucleotide incorporation was measured for form I DNA polymerase throughout purification. Despite the steadily decreasing ratio of 3[prime] to 5[prime] exonuclease to polymerase activity, the extent of misincorporation by form I enzyme remained unchanged during the final purification steps, suggesting that the exonuclease did not contribute to the accuracy of DNA synthesis by this polymerase. Fidelity of form I DNA polymerase, when compared with that of form II, revealed a higher level of misincorporation for form I enzyme, a finding that is consistent with the exonuclease playing little or no role in exonucleolytic proofreading.  相似文献   

5.
C A Keim  D W Mosbaugh 《Biochemistry》1991,30(46):11109-11118
Spinach chloroplast DNA polymerase was shown to copurify with a 3' to 5' exonuclease activity during DEAE-cellulose, hydroxylapatite, and heparin-agarose column chromatography. In addition, both activities comigrated during nondenaturing polyacrylamide gel electrophoresis and cosedimented through a glycerol gradient with an apparent molecular weight of 105,000. However, two forms of exonuclease activity were detected following velocity sedimentation analysis. Form I constituted approximately 35% of the exonuclease activity and was associated with the DNA polymerase, whereas the remaining activity (form II) was free of DNA polymerase and exhibited a molecular weight of approximately 26,500. Resedimentation of form I exonuclease generated both DNA polymerase associated and DNA polymerase unassociated forms of the exonuclease, suggesting that polymerase/exonuclease dissociation occurred. The exonuclease activity (form I) was somewhat resistant to inhibition by N-ethylmaleimide, whereas the DNA polymerase activity was extremely sensitive. Using in situ detection following SDS-polyacrylamide activity gel electrophoresis, both form I and II exonucleases were shown to reside in a similar, if not identical, polypeptide of approximately 20,000 molecular weight. Both form I and II exonucleases were equally inhibited by NaCl and required 7.5 mM MgCl2 for optimal activity. The 3' to 5' exonuclease excised deoxyribonucleoside 5'-monophosphates from both 3'-terminally matched and 3'-terminally mismatched primer termini. In general, the exonuclease preferred to hydrolyze mismatched 3'-terminal nucleotides as determined from the Vmax/Km ratios for all 16 possible combinations of matched and mismatched terminal base pairs. These results suggest that the 3' to 5' exonuclease may be involved in proofreading errors made by chloroplast DNA polymerase.  相似文献   

6.
B G Que  K M Downey  A G So 《Biochemistry》1978,17(9):1603-1606
The 3' to 5' exonuclease activity of Escherichia coli DNA polymerase I can be selectively inhibited by nucleoside 5'-monophosphates, wherease the DNA polymerase activity is not inhibited. The results of kinetic studies show that nucleotides containing a free 3'-hydroxy group and a 5'-phosphoryl group are competitive inhibitors of the 3' to 5' exonuclease. Previous studies by Huberman and Kornberg [Huberman, J., and Kornberg, A. (1970), J. Biol. Chem. 245, 5326] have demonstrated a binding site for nucleoside 5'-monophosphates on DNA polymerase I. The Kdissoc values for nucleoside 5'-monophosphates determined in that study are comparable to the Ki values determined in the present study, suggesting that the specific binding site for nucleoside 5'-monophosphates represents the inhibitor site of the 3' to 5' exonuclease activity. We propose that (1) the binding site for nucleoside 5'-monophosphates on DNA polymerase I may represent the product site of the 3' to 5' exonuclease activity. (2) the primer terminus site for the 3' to 5' exonuclease activity is distinct from the primer terminus site for the polymerase activity, and (3) nucleoside 5'-monophosphates bind at the primer terminus site for the 3' to 5' exonuclease activity.  相似文献   

7.
Captan (N-[(trichloromethyl)thio]-4-cyclohexene-1,2-dicarboximide) was shown to bind to DNA polymerase I from Escherichia coli. The ratio of [14C] captan bound to DNA pol I was 1:1 as measured by filter binding studies and sucrose gradient analysis. Preincubation of enzyme with polynucleotide prevented the binding of captan, but preincubation of enzyme with dGTP did not. Conversely, when the enzyme was preincubated with captan, neither polynucleotide nor dGTP binding was blocked. The modification of the enzyme by captan was described by an irreversible second-order rate process with a rate of 68 +/- 0.7 M-1 s-1. The interaction of captan with DNA pol I altered each of the three catalytic functions. The 3'----5' exonuclease and polymerase activities were inhibited, and the 5'----3' exonuclease activity was enhanced. In order to study the 5'----3' exonuclease activity more closely, [3H]hpBR322 (DNA-[3H]RNA hybrid) was prepared from pBR322 plasmid DNA and used as a specific substrate for 5'----3' exonuclease activity. When either DNA pol I or polynucleotide was preincubated with 100 microM captan, 5'----3' exonuclease activity exhibited a doubling of reaction rate as compared to the untreated sample. When 100 microM captan was added to the reaction in progress, 5'----3' exonuclease activity was enhanced to 150% of the control value. Collectively, these data support the hypothesis that captan acts on DNA pol I by irreversibly binding in the template-primer binding site associated with polymerase and 3'----5' exonuclease activities. It is also shown that the chemical reaction between DNA pol I and a single captan molecule proceeds through a Michaelis complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Processivity of DNA exonucleases.   总被引:5,自引:0,他引:5  
A homopolymer system has been developed to examine the digestion strategies of DNA exonucleases. Escherichia coli exonuclease I and lambda-exonuclease, are processive enzymes. However, T7 exonuclease, spleen exonuclease, E. coli exonuclease III, the 3' leads to 5'-exonuclease of T4 DNA polymerase, and both the 3' leads to 5' and the 5' leads to 3' activity of E. coli DNA polymerase I dissociate frequently from the substrate during the course of digestion. Regions of duplex DNA are a dissociation signal for exonuclease I.  相似文献   

9.
Most DNA polymerases are multifunctional proteins that possess both polymerizing and exonucleolytic activities. For Escherichia coli DNA polymerase I and its relatives, polymerase and exonuclease activities reside on distinct, separable domains of the same polypeptide. The catalytic subunits of the alpha-like DNA polymerase family share regions of sequence homology with the 3'-5' exonuclease active site of DNA polymerase I; in certain alpha-like DNA polymerases, these regions of homology have been shown to be important for exonuclease activity. This finding has led to the hypothesis that alpha-like DNA polymerases also contain a distinct 3'-5' exonuclease domain. We have introduced conservative substitutions into a 3'-5' exonuclease active site homology in the gene encoding herpes simplex virus DNA polymerase, an alpha-like polymerase. Two mutants were severely impaired for viral DNA replication and polymerase activity. The mutants were not detectably affected in the ability of the polymerase to interact with its accessory protein, UL42, or to colocalize in infected cell nuclei with the major viral DNA-binding protein, ICP8, suggesting that the mutation did not exert global effects on protein folding. The results raise the possibility that there is a fundamental difference between alpha-like DNA polymerases and E. coli DNA polymerase I, with less distinction between 3'-5' exonuclease and polymerase functions in alpha-like DNA polymerases.  相似文献   

10.
Xenopus laevis DNA polymerase gamma co-purifies with a tightly associated 3'----5' exonuclease. The purified enzyme lacks 5'----3' exonuclease and endonuclease activity. The ratio of the 3'----5' exonuclease activity to DNA polymerase gamma activity remains constant over the final three chromatographic procedures. In addition, these activities co-sediment under partially denaturing conditions in the presence of ethylene glycol. The associated 3'----5' exonuclease activity removes a terminally mismatched nucleotide more rapidly than a correctly base-paired 3'-terminal residue, as expected if this exonuclease has a proofreading function. The 3'----5' exonuclease has the ability to release a terminal phosphorothioated nucleotide, a property shared with T4 DNA polymerase, but not with Escherichia coli DNA polymerase I.  相似文献   

11.
The E. coli single-stranded binding protein (SSB) has been demonstrated in vitro to be involved in a number of replicative, DNA renaturation, and protective functions. It was shown previously that SSB can interact with exonuclease I to stimulate the hydrolysis of single-stranded DNA. We demonstrate here that E. coli SSB can also enhance the DNA deoxyribophosphodiesterase (dRpase) activity of exonuclease I by stimulating the release of 2-deoxyribose-5-phosphate from a DNA substrate containing AP endonuclease-incised AP sites, and the release of 4-hydroxy-2-pentenal-5-phosphate from a DNA substrate containing AP lyase-incised AP sites. E. coli SSB and exonuclease I form a protein complex as demonstrated by Superose 12 gel filtration chromatography. These results suggest that SSB may have an important role in the DNA base excision repair pathway.  相似文献   

12.
Xrn1p of Saccharomyces cerevisiae is a major cytoplasmic RNA turnover exonuclease which is evolutionarily conserved from yeasts to mammals. Deletion of the XRN1 gene causes pleiotropic phenotypes, which have been interpreted as indirect consequences of the RNA turnover defect. By sequence comparisons, we have identified three loosely defined, common 5'-3' exonuclease motifs. The significance of motif II has been confirmed by mutant analysis with Xrn1p. The amino acid changes D206A and D208A abolish singly or in combination the exonuclease activity in vivo. These mutations show separation of function. They cause identical phenotypes to that of xrn1Delta in vegetative cells but do not exhibit the severe meiotic arrest and the spore lethality phenotype typical for the deletion. In addition, xrn1-D208A does not cause the severe reduction in meiotic popout recombination in a double mutant with dmc1 as does xrn1Delta. Biochemical analysis of the DNA binding, exonuclease, and homologous pairing activity of purified mutant enzyme demonstrated the specific loss of exonuclease activity. However, the mutant enzyme is competent to promote in vitro assembly of tubulin into microtubules. These results define a separable and specific function of Xrn1p in meiosis which appears unrelated to its RNA turnover function in vegetative cells.  相似文献   

13.
DNA polymerase I (pol I) from Escherichia coli has three well-defined activities: DNA polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. We have raised monoclonal antibodies to pol I which selectively neutralize each of these three activities, thus supporting the model of separate active sites for each activity, heretofore exclusively demonstrated with proteolytic fragments of pol I. Antibodies from each class could bind pol I in the presence of antibodies of another class, indicating the existence of significant spatial separation between each of the three sites. In addition, several of the neutralizing antibodies were able to distinguish particular activities of the 5'-3' exonuclease. One of them, for example, inhibited the RNase H activity but not the DNase activity. Two other antibodies could, in addition to inhibiting the polymerase and the 3'-5' exonuclease, either stimulate or inhibit the 5'-3' exonuclease depending upon the assay conditions, particularly the ionic strength.  相似文献   

14.
Earlier results from sectioned nuclei indicating that Schizosaccharomyces pombe does not develop a classical tripartite synaptonemal complex (SC) during meiotic prophase are confirmed by spreading of whole nuclei. The linear elements appearing during prophase I resemble the axial cores (SC precursors) of other organisms. The number of linear elements in haploid, diploid, and tetraploid strains is always higher than the chromosome number, implying that they are not formed continuously along the chromosomes. Time course experiments reveal that the elements appear after DNA replication and form networks and bundles. Later they separate and approximately 24 individual elements with a total length of 34 microns are observed before degradation and meiotic divisions. Parallel staining of DNA reveals changes in nuclear shape during meiotic prophase. Strains with a mei4 mutation are blocked at a late prophase stage. In serial sections we additionally observed a constant arrangement of the spindle pole body, the nucleolus, and the presumptive centromere cluster. Thus, S. pombe manages to recombine and segregate its chromosomes without SC. This might correlate with the absence of crossover interference. We propose a mechanism for chromosome pairing with initial recognition of the homologs at the centromeres and suggest functions of the linear elements in preparation of the chromosomes for meiosis I disjunction. With the spreading technique combined genetic, molecular, and cytological approaches become feasible in S. pombe. This provides an opportunity to study essential meiotic functions in the absence of SCs which may help to clarify the significance of the SC and its components for meiotic chromosome structure and function.  相似文献   

15.
Yeast cells from a wild type or protease-deficient strain were lysed in the absence or presence of protease inhibitors and the extracts analyzed by analytical high pressure liquid chromatography on diethylaminoethyl silica gel. Conditions that inhibited protease action caused elution of a novel DNA polymerase activity at a position in the gradient distinct from the elution positions of both DNA polymerase I and II. In large scale purifications, this DNA polymerase, called DNA polymerase III, copurified with a single-stranded DNA dependent 3'-5' exonuclease activity, exonuclease III, to near homogeneity. Glycerol gradient centrifugation partially dissociated the complex to yield two peaks of exonuclease III activity, one at 7.7 S together with the DNA polymerase, and one at 4.0 S without polymerase activity. Gel filtration indicated that the complex has a molecular mass greater than 400 kDa. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicated that the complex consists of several subunits: 140, 62, 55, and 53 kilodaltons, some of which may be proteolysis products. The exonuclease component of the complex can excise single nucleotide mismatches providing a base-paired primer-template which can be elongated by the DNA polymerase. Under replication conditions, the complex exhibits a measurable turnover rate of dTTP to dTMP and it contains no primase activity. The enzymatic activities of the 3'-5' exonuclease are consistent with a proofreading function during in vivo DNA replication. A second exonuclease activity, exonuclease IV, separated from the complex late in the purification scheme. It degrades both single-stranded and double-stranded DNA in the 5'----3' direction.  相似文献   

16.
Endonuclease I, exonuclease I, and exonuclease II-deoxyribonucleic acid (DNA) polymerase I activities are not vital functions in Escherichia coli, although the latter two enzymes have been indirectly shown to be involved in DNA repair processes. Acridines such as acridine orange and proflavine interfere with repair in vivo, and we find that such compounds inhibit the in vitro activity of exonuclease I and DNA polymerase I but stimulate endonuclease I activity and hydrolysis of p-nitrophenyl thymidine-5′-phosphate by exonuclease II. Another acridine, 10-methylacridinium chloride, binds strongly to DNA but is relatively inert both in vivo and in vitro. These experiments suggest that acridines affect enzyme activity by interacting with the enzyme directly as well as with DNA. Resulting conformational changes in the DNA-dependent enzymes might explain why similar acridines which form similar DNA complexes have such a wide range of physiological effects. Differential sensitivity of exonuclease I and DNA polymerase I to acridine inhibition relative to other DNA-dependent enzymes may contribute to the acridine sensitivity of DNA repair.  相似文献   

17.
The Saccharomyces cerevisiae strand exchange protein 1 (Sep1; also referred to as Xrn1, Kem1, Rar5, or Stp beta) catalyzes the formation of hybrid DNA from model substrates in vitro. The protein is also a 5'-to-3' exonuclease active on DNA and RNA. Multiple roles for the in vivo function of Sep1, ranging from DNA recombination and cytoskeleton to RNA turnover, have been proposed. We show that Sep1 is an abundant protein in vegetative S. cerevisiae cells, present at about 80,000 molecules per diploid cell. Protein levels were not changed during the cell cycle or in response to DNA-damaging agents but increased twofold during meiosis. Cell fractionation and indirect immunofluorescence studies indicated that > 90% of Sep1 was cytoplasmic in vegetative cells, and indirect immunofluorescence indicated a cytoplasmic localization in meiotic cells as well. The localization supports the proposal that Sep1 has a role in cytoplasmic RNA metabolism. Anti-Sep1 monoclonal antibodies detected cross-reacting antigens in the fission yeast Schizosccharomyces pombe, in Drosophila melanogaster embryos, in Xenopus laevis, and in a mouse pre-B-cell line.  相似文献   

18.
Excision of deoxyribose-phosphate residues from enzymatically incised abasic sites in double-stranded DNA is required prior to gap-filling and ligation during DNA base excision-repair, and a candidate deoxyribophosphodiesterase (dRpase) activity has been identified in E. coli. This activity is shown here to be a function of the E. coli RecJ protein, previously described as a 5'-->3' single-strand specific DNA exonuclease involved in a recombination pathway and in mismatch repair. Highly purified preparations of dRpase contained 5'-->3' exonuclease activity for single-stranded DNA, and homogeneous RecJ protein purified from an overproducer strain had both 5'-->3' exonuclease and dRpase activity. Moreover, E. coli recJ strains were deficient in dRpase activity. The hydrolytic dRpase function of the RecJ protein requires Mg2+; in contrast, the activity of E. coli Fpg protein, that promotes the liberation of 5'-->3'Rp residues from DNA by beta-elimination, is suppressed by Mg2+. Several other E. coli nucleases, including exonucleases I, III, V, and VII, endonucleases I, III and IV and the 5'-->3' exonuclease function of DNA polymerase I, are unable to act as a dRpase. Nevertheless, E. coli fpg recJ double mutants retain capacity to repair abasic sites in DNA, indicating the presence of a back-up excision function.  相似文献   

19.
The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.  相似文献   

20.
The main endonuclease for apurinic sites of Escherichia coli (endonuclease VI) has no action on normal strands, either in double-stranded or single-stranded DNA, or on alkylated sites. The enzyme has an optimum pH at 8.5, is inhibited by EDTA and needs Mg2+ for its activity; it has a half-life of 7 min at 40 degrees C. A purified preparation of endonuclease VI, free of endonuclease II activity, contained exonuclease III; the two activities (endonuclease VI and exonuclease III) copurified and were inactivated with the same half-lives at 40 degrees C. Endonuclease VI cuts the DNA strands on the 5' side of the apurinic sites giving a 3'-OH and a 5'-phosphate, and exonuclease III, working afterwards, leaves the apurinic site in the DNA molecule; this apurinic site can subsequently be removed by DNA polymerase I. The details of the excision of apurinic sites in vitro from DNA by endonuclease VI/exonuclease III, DNA polymerase I and ligase, are described; it is suggested that exonuclease III works as an antiligase to facilitate the DNA repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号