首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Radial distribution functions were deduced by Fourier transform analysis of the angular dependences of diffuse X-ray scattering intensities for the following proteins with different hydration degrees: water-soluble α-protein myoglobin, water-soluble (α + β) protein lysozyme, and transmembrane proteins from the photosynthetic reaction centers of purple bacteria Rhodobacter sphaeroides and Blastochlorii (Rhodopseudomonas) viridis. The results of Fourier transform analysis of X-ray scattering intensities give quantitative characteristics of the mechanism underlying the influence of water on the formation of biological macromolecules. On the one hand, water loosens the network of hydrogen bonds, which results in a considerable conformational mobility in the molecules of lysozyme and myoglobin and the reaction centers. On the other hand, water stabilizes and orders the protein globule. A strict correlation was found between the shift of the “first” maximum of the radial distribution function, loosening of the intraglobular hydrogen bonds, increase in the intramolecular mobility, and appearance of pronounced functional activity in macromolecules. The pattern of behavior of the first maximum in the transmembrane proteins of the reaction center was similar to that observed for the water-soluble proteins. However, the first maximum reached the limiting value of 2.9 Å at a considerably lower hydration degree compared with the water-soluble proteins. A quick transition of the protein complex of the reaction center to its native state is due to the fact that the dehydrated conformation of this complex is very close to the native conformation. Comparison of the radial distribution function for water, water-soluble proteins, and transmembrane proteins suggests a quantitative conclusion that water is the least densely packed and ordered system, the water-soluble proteins are more densely packed than water, and the transmembrane proteins are the most densely packed and ordered system.  相似文献   

2.
The angle dependencies of diffuse x-ray scattering intensities were studied in a wide range of angles from 3 to 80 degrees for water-soluble and membrane proteins with a different structural organization: alpha-helical protein myoglobin, alpha-helical protein serum albumen, alpha + beta protein lysozyme, and transmembrane proteins of photosynthetic reaction centers (RC) from purple bacteria Rhodobacter sphaeroides, and Blastochlorii (Rhodopseudomonas) viridis containing cytocrome c, situated out side the membrane, and for H and L+M subunits of membrane protein of reaction center from Rb. sphaeroides for various hydration degrees. The hydration/dehydration process was studied for water-soluble proteins (within hydration range from h = 0.05 to h = 1). The hydration/dehydration process appears to be reversible. All water-soluble proteins show a 10 angstroms peak, and proteins of reaction center do not show this peak. A quantitative comparable study of the behaviour for of the 10 angstroms peak different proteins the degree of lysozyme hydration increases from h = 0.05 to h = 0.45, the protein structure slightly changes (most probably the motifoffolding), the structure of myoglobin in solution is slightly different from the structure in crystal. By taking into account the changes in the shape and intensity of the 10 angstroms peak only, it is impossible to make the conclusion about structural changes in other proteins studied. A correlation between the structural changes observed and dynamic and functional properties of proteins is discussed.  相似文献   

3.
J Cladera  M Sabés  E Padrós 《Biochemistry》1992,31(49):12363-12368
Fourier transform infrared spectroscopy at a resolution of 1 cm-1 has been used to study the conformation of dark-adapted bacteriorhodopsin in the native purple membrane, in H2O and D2O suspensions. A detailed analysis of the amide I bands was made using derivative and deconvolution techniques. Curve-fitting results of four independent experiments indicate, after estimation of the methodological errors, that native bacteriorhodopsin contains 52-73% alpha-helices, 13-19% reverse turns, 11-16% beta-sheets, and 3-7% unordered segments. Our analysis has enabled the identification of several components corresponding to alpha-helices, beta-sheets, and reverse turns. Besides the alpha I- and alpha II-helices (peaking at 1658 and 1665 cm-1), we propose that two more infrared bands arise from alpha-helical structures: one at 1650 cm-1 from alpha I and another one at 1642 cm-1 in H2O suspension, which could originate from type III beta-turns (i.e., one turn of 3(10)-helix). The relatively high content of reverse turns suggests the presence of one reverse turn per loop, plus another one in the C-terminal segment. On the other hand, several reasons argue that the calculated mean beta-sheet content of around 14% should be decreased somewhat. These beta-sheets could be located in the noncytoplasmatic links of the bacteriorhodopsin molecule.  相似文献   

4.
Here we describe the large-scale domain movements and hydration structure changes in the active-site cleft of unligated glutamate dehydrogenase. Glutamate dehydrogenase from Thermococcus profundus is composed of six identical subunits of M(r) 46K, each with two distinct domains of roughly equal size separated by a large active-site cleft. The enzyme in the unligated state was crystallized so that one hexamer occupied a crystallographic asymmetric unit, and the crystal structure of the hexamer was solved and refined at a resolution of 2.25 A with a crystallographic R-factor of 0.190. In that structure, the six subunits displayed significant conformational variations with respect to the orientations of the two domains. The variation was most likely explained as a hinge-bending motion caused by small changes in the main chain torsion angle of the residue composing a loop connecting the two domains. Small-angle X-ray scattering profiles both at 293 and 338 K suggested that the apparent molecular size of the hexamer was slightly larger in solution than in the crystalline state. These results led us to the conclusion that (i) the spontaneous domain motion was the property of the enzyme in solution, (ii) the domain motion was trapped in the crystallization process through different modes of crystal contacts, and (iii) the magnitude of the motion in solution was greater than that observed in the crystal structure. The present cryogenic diffraction experiment enabled us to identify 1931 hydration water molecules around the hexamer. The hydration structures around the subunits exhibited significant changes in accord with the degree of the domain movement. In particular, the hydration water molecules in the active-site cleft were rearranged markedly through migrations between specific hydration sites in coupling strongly with the domain movement. We discussed the cooperative dynamics between the domain motion and the hydration structure changes in the active site of the enzyme. The present study provides the first example of a visualized hydration structure varying transiently with the dynamic movements of enzymes and may form a new concept of the dynamics of multidomain enzymes in solution.  相似文献   

5.
Quantitative structures were obtained for the fully hydrated fluid phases of dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) bilayers by simultaneously analyzing x-ray and neutron scattering data. The neutron data for DOPC included two solvent contrasts, 50% and 100% D2O. For DPPC, additional contrast data were obtained with deuterated analogs DPPC_d62, DPPC_d13, and DPPC_d9. For the analysis, we developed a model that is based on volume probability distributions and their spatial conservation. The model's design was guided and tested by a DOPC molecular dynamics simulation. The model consistently captures the salient features found in both electron and neutron scattering density profiles. A key result of the analysis is the molecular surface area, A. For DPPC at 50°C A = 63.0 Å2, whereas for DOPC at 30°C A = 67.4 Å2, with estimated uncertainties of 1 Å2. Although A for DPPC agrees with a recently reported value obtained solely from the analysis of x-ray scattering data, A for DOPC is almost 10% smaller. This improved method for determining lipid areas helps to reconcile long-standing differences in the values of lipid areas obtained from stand-alone x-ray and neutron scattering experiments and poses new challenges for molecular dynamics simulations.  相似文献   

6.
W Z He  W R Newell  P I Haris  D Chapman  J Barber 《Biochemistry》1991,30(18):4552-4559
The secondary structure of the photosystem II (PSII) reaction center isolated from pea chloroplasts has been characterized by Fourier transform infrared (FTIR) spectroscopy. Spectra were recorded in aqueous buffers containing H2O or D2O; the detergent present for most measurements was dodecyl maltoside. The broad amide I and amide II bands were analyzed by using second-derivative and deconvolution procedures. Absorption bands were assigned to the presence of alpha-helices, beta-sheets, turns, or random structure. Quantitative analysis revealed that this complex contained a high proportion of alpha-helices (67%) and some antiparallel beta-sheets (9%) and turns (11%). An irreversible decrease in the intensity of the band associated with the alpha-helices occurs upon exposure of the isolated PSII reaction center to bright illumination. This loss of alpha-helical content gave rise to an increase in other secondary structures, particularly beta-sheets. After similar pretreatment with light, sodium dodecyl sulfate polyacrylamide gel electrophoresis reveals lower mobility and solubility of constituent D1 and D2 polypeptides of the PSII reaction center. Some degradation of these polypeptides also occurs. In contrast, there is no change in the mobility of the two subunits of cytochrome b559. In the absence of illumination, the PSII reaction center exchanged into dodecyl maltoside shows good thermal stability as compared with samples in Triton X-100. Only at a temperature of about 60 degrees C do spectral changes take place that are indicative of denaturation.  相似文献   

7.
An infrared (ir) method to determine the secondary structure of proteins in solution using the amide I region of the spectrum has been devised. The method is based on the circular dichroism (CD) matrix method for secondary structure analysis given by Compton and Johnson (L. A. Compton and W. C. Johnson, 1986, Anal. Biochem. 155, 155-167). The infrared data matrix was constructed from the normalized Fourier transform infrared spectra from 1700 to 1600 cm-1 of 17 commercially available proteins. The secondary structure matrix was constructed from the X-ray data of the seventeen proteins with secondary structure elements of helix, beta-sheet, beta-turn, and other (random). The CD and ir methods were compared by analyzing the proteins of the CD and ir databases as unknowns. Both methods produce similar results compared to structures obtained by X-ray crystallographic means with the CD slightly better for helix conformation, and the ir slightly better for beta-sheet. The relatively good ir analysis for concanavalin A and alpha-chymotrypsin indicate that the ir method is less affected by the presence of aromatic groups. The concentration of the protein and the cell path length need not be known for the ir analysis since the spectra can be normalized to the total ir intensity in the amide I region. The ir spectra for helix, beta-sheet, beta-turn, and other, as extracted from the data-base, agree with the literature band assignments. The ir data matrix and the inverse matrix necessary to analyze unknown proteins are presented.  相似文献   

8.
Small-angle X-ray scattering data suggest that major but reversible rearrangements of mitochondrial inner membrane structure are induced by uncouplers. Low levels of 2,4-dinitrophenol (10 μM) cause a perceptible wide-angle shift of the 20 mrad X-ray scattering maximum characteristic of intact liver mitochondria. Higher dinitrophenol concentrations (> 25 μM) reduce this scattering maximum to one-third its initial intensity. In terms of mitochondrial function, the former scattering change appears to correlate with the uncoupling of oxidative phosphorylation while the latter occurs in the course of dinitrophenol stimulation of mitochondrial ATPase activity.  相似文献   

9.
The score matrix from a structure comparison program (SAP) was used to search for repeated structures using a Fourier analysis. When tested with artificial data, a simple Fourier transform of the smoothed matrix provided a clear signal of the repeat periodicity that could be used to extract the repeating units with the SAP program. The strength of the Fourier signal was calibrated against the signal from model proteins. The most useful of these was the novel random-walk approach employed to generate realistic 'fake' structures. On the basis of these it was possible to conclude that only a small proportion of protein structures have an unexpected degree of symmetry. Artificially generated 'ideal' folds provided an upper limit on the strength of signal that could be expected from a 'perfectly' repeating compact structure. Unexpectedly, some of the very regular beta-propellor folds attained the same strength but the majority of symmetric structures lay below this region. When native proteins were ranked by the power of their spectrum a wide variety of fold types were seen to score highly. In the betaalpha class, these included the globular betaalpha proteins and the more repetitive leucine-rich betaalpha folds. In the all-beta class; beta-propellors, beta-prisms and beta-helices were found as well as the more globular gamma-crystalin domains. When this ranked list was filtered to remove proteins that contained detectable internal sequence similarity (using the program REPRO), the list became exclusively composed of just globular betaalpha class proteins and in the top 50 re-ranked proteins, only a single 4-fold propellor structure remained.  相似文献   

10.
The expression of recombinant human growth hormone (h-GH) and human interferon-alpha-2b (IFN-alpha-2b) in E. coli leads to the formation of insoluble protein aggregates or inclusion bodies (IBs). The secondary structure of these IBs, their corresponding native forms and thermal aggregates were studied by Fourier Transform Infrared (FT-IR) spectroscopy and microspectroscopy. It was demonstrated that residual native-like structures were maintained within IBs at different extents depending on the level of expression, with possible implications in biotechnology. Furthermore, comparison between infrared spectra of thermal aggregates and IBs suggests new insights on the structure of protein aggregates.  相似文献   

11.
An overview of the application of Fourier transform infrared spectroscopy for the analysis of the structure of proteins and protein-ligand recognition is given. The principle of the technique and of the spectra analysis is demonstrated. Spectral signal assignments to vibrational modes of the peptide chromophore, amino acid side chains, cofactors and metal ligands are summarized. Several examples for protein-ligand recognition are discussed. A particular focus is heme proteins and, as an example, studies of cytochrome P450 are reviewed. Fourier transform infrared spectroscopy in combination with the various techniques such as time-resolved and low-temperature methods, site-directed mutagenesis and isotope labeling is a helpful approach to studying protein-ligand recognition.  相似文献   

12.
Attenuated total reflection Fourier transform infrared spectroscopy was used to investigate the secondary structure of the surfactant protein SP-B. Nearly half of the polypeptide chain is folded in an alpha-helical conformation. No significant change of the secondary structure content was observed when the protein is associated to a lipid bilayer of dipalmitoylphosphatidylcholine (DPPC)/phosphatidylglycerol (PG) or of dipalmitoylphosphatidylglycerol (DPPG). The parameters related to the gamma w(CH2) vibration of the saturated acyl chains reveal no modification of the conformation or orientation of the lipids in the presence of SP-B. A model of orientation of the protein at the lipid/water interface is proposed. In this model, electrostatic interactions between charged residues of SP-B and polar headgroups of PG, and the presence of small hydrophobic alpha-helical peptide stretches slightly inside the bilayers, would maintain SP-B at the membrane surface.  相似文献   

13.
Small-angle X-ray scattering experiments were carried out on rat thymus chromatin in "native" and "H1-depleted" states at various NaCl concentrations using synchrotron radiation. From the analysis of cross-sectional Guinier plots, the radius of gyration of the cross section (Rc) and the mass per unit length (Mc) of native chromatin were evaluated. In the absence of NaCl, the cross section of chromatin filament has a radius of gyration of 3.44 nm, suggesting the structure corresponding to the "10 nm" filament. With increasing NaCl concentration, the Rc value increases steeply to 6.74 nm at 5 mM NaCl and then gradually to 8.82 nm at 50 mM NaCl, whereas the Mc value, which is determined relative to that of tobacco mosaic virus (TMV), increases steadily from 1.58 nucleosomes per 10 nm in the absence of NaCl to 7.66 nucleosomes per 10 nm at 50 mM NaCl. However, since calibration with TMV tends to overestimate the Mc value, the actual Mc values may be less than those values. Above about 40 mM NaCl, aggregation of chromatin is suggested. Similar analysis of H1-depleted chromatin confirmed that H1-depleted chromatin takes a more disordered structure than native chromatin at low ionic strength and does not undergo a definite structure change upon further addition of NaCl.  相似文献   

14.
15.
Proteinase inhibitor members of the SERPIN superfamily are characterized by the presence of a proteolytically sensitive reactive-site loop. Cleavage within this region results in a conformational transition from an unstable "stressed" native protein to a more stable "relaxed" cleaved molecule. In order to identify the principal molecular aspects of this transition, 1H nuclear magnetic resonance (n.m.r.) and FT-IR spectroscopy were applied to the study of four SERPINs. 1H n.m.r. spectra of approximately 20 high-field ring-current-shifted methyl signals exhibited slightly different chemical shifts in the native and cleaved forms of alpha 1-antitrypsin (alpha 1-AT), alpha 1-antichymotrypsin (alpha 1-ACT) and C1 inhibitor (C1-INH), but not ovalbumin, between 20 degrees C and 90 degrees C. Ring current calculations based on crystal co-ordinates for cleaved alpha 1-AT and alpha 1-ACT and native ovalbumin showed that these signals originate from highly localized interactions between different buried residues corresponding to alpha-helix and beta-sheet segments of the SERPIN fold. The small shift changes correspond to small relative conformational side-chain rearrangements of about 0.01 nm to 0.05 nm in the protein hydrophobic core, i.e. the tertiary structure interactions in the two forms of the SERPIN fold are well-preserved, and changes in this appear unimportant for the stabilization found after reactive centre cleavage. Fourier transform infrared (FT-IR) spectroscopic studies of the amide I band showed that the native and cleaved forms of alpha 1-AT, alpha 1-ACT and C1-INH contain 28% to 36% alpha-helix and 38% to 44% beta-sheet. Second derivative FT-IR spectra using H2O and 2H2O buffers revealed very large differences in the amide I band between the native and cleaved forms of alpha 1-AT, alpha 1-ACT and C1-INH, but not for ovalbumin. The alpha-helix band was most sensitive to 1H-2H exchange, while the beta-sheet bands were not, and greater amounts of antiparallel beta-sheet were detected in the cleaved form. 1H n.m.r. showed that polypeptide amide 1H-2H exchange was greater in the native forms of alpha 1-AT, alpha 1-ACT and C1-INH than in their cleaved forms, whereas for ovalbumin it was unchanged. The FT-IR and 1H-2H exchange data show that alterations in the secondary structure are central to the stabilization of the cleaved SERPIN structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The Fourier transform infrared difference spectra between light-adapted bacteriorhodopsin (BR) and its photointermediates, L and M, were analyzed for the 3750-3450-cm-1 region. The O-H stretching vibrational bands were identified from spectra upon substitution with 2H2O. Among them, the 3642-cm-1 band of BR was assigned to water by substitution with H2(18)O. By a comparison with the published infrared spectra of the water in model systems [Mohr, S.C., Wilk, W.D., & Barrow, G.M. (1965) J. Am. Chem. Soc. 87, 3048-3052], it is shown that the O-H bonds of the water in BR interact very weakly. Upon formation of L, the interaction becomes stronger. The O-H bonds of the protein side chain undergo similar changes. On the other hand, M formation further weakens the interaction of the same water molecules in BR. The appearance of a sharp band at 3486 cm-1, which was assigned tentatively to the N-H stretching vibration of the peptide bond, is unique to L. The results suggest that the water molecules are involved in the perturbation of Asp-96 in the L intermediate and that they are exerted from the protonated Schiff base which changes position upon the light-induced reaction.  相似文献   

17.
WANG  Jun  ZHANG  LiXin  LIANG  HouGuo 《Photosynthetica》1998,34(1):141-145
A peptide ranging from residues 229 to 240 (ENESANEGYRFG) of D1 protein was synthesized by stepwise solid-phase method. Resolution enhancement techniques were combined with band curve-fitting procedures to quantitate the FTIR spectra in the amide I' region (1700-1600 cm-1). FTIR analysis showed that DCMU induced drastic structural modification with a relative decrease of the unordered structure and turns, and a substantial increase of α-helix, which indicated that a much more compact structure was formed when DCMU was applied. The results may reflect molecular information for the protective effect of DCMU against photoinhibition.  相似文献   

18.
Infrared spectroscopy is one of the oldest and well established experimental techniques for the analysis of secondary structure of polypeptides and proteins. It is convenient, non-destructive, requires less sample preparation, and can be used under a wide variety of conditions. This review introduces the recent developments in Fourier transform infrared (FTIR) spectroscopy technique and its applications to protein structural studies. The experimental skills, data analysis, and correlations between the FTIR spectroscopic bands and protein secondary structure components are discussed. The applications of FTIR to the second- ary structure analysis, conformational changes, structural dynamics and stability studies of proteins are also discussed.  相似文献   

19.
A peptide ranging from residues 229 to 240 (ENESANEGYRFG) of D1 protein was synthesized by stepwise solid-phase method. Resolution enhancement techniques were combined with band curve-fitting procedures to quantitate the FTIR spectra in the amide I' region (1700-1600 cm-1). FTIR analysis showed that DCMU induced drastic structural modification with a relative decrease of the unordered structure and turns, and a substantial increase of α-helix, which indicated that a much more compact structure was formed when DCMU was applied. The results may reflect molecular information for the protective effect of DCMU against photoinhibition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The structural changes in bacteriorhodopsin during the photocycle are investigated. Time resolved polarized infrared spectroscopy in combination with photoselection is used to determine the orientation and motion of certain structural units of the molecule: Asp-85, Asp-96, Asp-115, the Schiff base, and several amide I vibrations. The results are compared with recently published x-ray diffraction data with atomic resolution about conformational motions during the photocycle. The orientation of the measured vibrations are also calculated from the structure data, and based on the comparison of the values from the two techniques new information is obtained: several amide I bands in the infrared spectrum are assigned, and we can also identify the position of the proton in the protonated Asp residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号