首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper provides data on the skeleton, musculature, buccal apparatus, buccopharyngeal cavity and diet of Ceratophrys cranwelli tadpoles, and attempts to contribute to the knowledge of relations between morphology and ecology in anuran larvae. Both in morphological characters and feeding habits, these tadpoles are very similar to other species within the genus. They possess many of the structural features usually found in predaceous tadpoles: strong, keratinized jaw sheaths and keratodonts, reduced buccal papillation, high values of in‐lever arm proportion and buccal floor area, well‐developed ceratohyals, and hypertrophied jaw muscles. Food sources consist of other tadpoles, microcrustaceans, larvae of insects, plant fragments, as well as rotifers and microalgae. As facultative carnivores, they are likely to play an important role in regulating the aquatic communities of the ephemeral ponds where they develop.  相似文献   

2.
Ziermann, J.M., Infante, C., Hanken, J. and Olsson, L. 2011. Morphology of the cranial skeleton and musculature in the obligate carnivorous tadpole of Lepidobatrachus laevis (Anura: Ceratophryidae). —Acta Zoologica (Stockholm) 00 :1–12. Lepidobatrachus laevis (Ceratophryidae: Ceratophryinae) is a bizarre frog endemic to the Chacoan desert of central South America. Its tadpole is an obligate carnivore that can catch and consume live prey nearly its own size. Morphological adaptations associated with this unique feeding mode, including the larval skull anatomy and associated cranial musculature, have only been partly described. We studied the head of Stages 26–27 larvae using gross dissection, immunohistochemistry, and standard histology. Derived features of this tadpole compared to the microphagous, herbivorous larvae of most other anurans include simplified chondrocranial cartilages and very robust jaw muscles. The mm. suspensorio‐ et quadratoangularis do not take their origin from the processus muscularis of the palatoquadrate, as in most other tadpoles, but instead originate from the corpus of the palatoquadrate caudal to this process. The jaw levators are unusually large. The tadpole of Ceratophrys, another member of the ceratophryine clade, also consumes large animal prey, but its morphology is very different. It probably has evolved independently from a generalized, mainly herbivorous tadpole similar to the larva of Chacophrys, the third ceratophryine genus. Most specialized features of the larval head of Lepidobatrachus laevis are adaptations for ‘megalophagy’—ingestion of whole, very large animal prey.  相似文献   

3.
The relationships between morphology, performance, behavior and ecology provide evidence for multiple and complex phenotypic adaptations. The anuran body plan, for example, is evolutionarily conserved and shows clear specializations to jumping performance back at least to the early Jurassic. However, there are instances of more recent adaptation to habit diversity in the post‐cranial skeleton, including relative limb length. The present study tested adaptive models of morphological evolution in anurans associated with the diversity of microhabitat use (semi‐aquatic arboreal, fossorial, torrent, and terrestrial) in species of anuran amphibians from Brazil and Australia. We use phylogenetic comparative methods to determine which evolutionary models, including Brownian motion (BM) and Ornstein‐Uhlenbeck (OU) are consistent with morphological variation observed across anuran species. Furthermore, this study investigated the relationship of maximum distance jumped as a function of components of morphological variables and microhabitat use. We found there are multiple optima of limb lengths associated to different microhabitats with a trend of increasing hindlimbs in torrent, arboreal, semi‐aquatic whereas fossorial and terrestrial species evolve toward optima with shorter hindlimbs. Moreover, arboreal, semi‐aquatic and torrent anurans have higher jumping performance and longer hindlimbs, when compared to terrestrial and fossorial species. We corroborate the hypothesis that evolutionary modifications of overall limb morphology have been important in the diversification of locomotor performance along the anuran phylogeny. Such evolutionary changes converged in different phylogenetic groups adapted to similar microhabitat use in two different zoogeographical regions.  相似文献   

4.
5.
Kin distribution of amphibian larvae in the wild   总被引:1,自引:0,他引:1  
According to kin selection theory, the location of an individual with respect to its relatives can have important ramifications for its fitness. Perhaps more than any other vertebrate group, anuran amphibian larvae have been the subject of many experiments on this topic. Some anuran species have been shown in the laboratory to recognize and associate with their siblings and half-siblings. However, due to the difficulty of identifying sibships, no kinship studies with anuran larvae have been conducted in the wild. Here, we use microsatellite analysis to show that wood frog (Rana sylvatica) tadpoles were nonrandomly distributed in two ponds with respect to their relatives. In one pond, the tadpoles were significantly clumped with their siblings or half-siblings as expected from other published laboratory studies on this species. However, in another pond, the tadpoles were significantly nonrandomly dispersed from their siblings or half-siblings. This is the first example of kin repulsion of nonreproductive animals in the wild and the first time a species has been shown to display both aggregation and repulsion under different circumstances. These results suggest that kin distribution is context dependent and demonstrate the importance of testing kin selection hypotheses under natural conditions.  相似文献   

6.
Direct development has evolved in rhacophorine frogs independently from other anuran lineages, thereby offering an opportunity to assess features associated with this derived life history. Using a developmental series of the direct-developing Philautus silus (Ranidae: Rhacophorinae) from Sri Lanka, we examine features of cranial morphology that are part of a suite of adaptations that facilitate feeding in free-living tadpoles, but have been changed or lost in other direct-developing lineages. Larval-specific upper jaw cartilages, which are absent from many non-rhacophorine direct-developing species (such as Eleutherodactylus coqui), develop in embryos of P. silus. Similarly, lower jaw cartilages initially assume a larval morphology, which is subsequently remodeled into the adult jaw configuration before hatching. However, the cartilaginous jaw suspension and hyobranchial skeleton never assume a typical larval morphology. The palatoquadrate, which suspends the lower jaw, lacks the posterior connections to the braincase found in many metamorphosing species. Unlike in metamorphosing species, bone formation in P. silus begins before hatching. However, the sequence of bone formation resembles that of metamorphosing anurans more than that of other direct developers. In particular, P. silus does not exhibit precocious ossification of the lower jaw, which is characteristic of some frogs and caecilians that lack a free-living tadpole. These data reveal some similarities between Philautus and other direct-developing anurans. However, the departure of Philautus embryos from the generalized tadpole skeletal morphology is less pronounced than that observed in other direct-developing taxa.  相似文献   

7.
8.
The remarkable lifestyle of heterocongrines has drawn the attention of many authors in the past, though no or little attention has been paid to the morphology of the tail and the head of these species. In order to examine the true nature of possible morphological specializations of the head and tail and their relation to their tail-first burrowing habit and/or feeding mode, a detailed myological and osteological study of Heteroconger hassi and Heteroconger longissimus was performed. The osteological similarities of the cranial skeleton between H. hassi and H. longissimus are striking. Most of the cranial muscles show no variation in presence, insertion or origin between these two species except for the adductor mandibulae complex, the adductor hyomandibulae and the intermandibularis. The adductor mandibulae complex is small, compared to that of other anguilliform species, and is probably related to their suction-dominated feeding mode and a diet, comprising mainly small, soft prey items. Heterocongrinae have undergone several morphological specializations in the tail for their tail-first burrowing lifestyle. The skeleton and musculature of the tail of H. hassi and H. longissimus are similar. In both species the caudal skeleton is highly reduced and fortified, forming a firm, pointed burrowing tool. Intrinsic caudal musculature is reduced and some muscles (interradials, supracarinalis) are even absent.  相似文献   

9.
10.
Most anurans have a biphasic life cycle, which includes metamorphosis from a tadpole stage to an adult frog. This process involves extensive transformations of the cranial skeleton, which have been of long‐standing interest with respect to anuran skeletal evolution and taxonomy. In this study, large‐scale patterns of anuran skeletal ossification are assessed by collecting the most comprehensive data set on anuran cranial ossification to date from the literature, including data for 45 anuran and one caudate outgroup species. Ossification sequences were translated into event‐pair matrices for explorative phylogenetic analysis and phylogenetically informed parsimony search for heterochrony using the Parsimov algorithm. Rank variability of single bones across species was also analysed. Little phylogenetic signal was retrieved from a parsimony‐based phylogenetic analysis of event‐pairs, and only a few species that are generally agreed to be closely related are placed close to each other (e.g. some Pipidae and Costata). Parsimov analysis revealed some clade‐specific heterochrony in anuran clades of varying inclusiveness. Our results show that relating heterochronic changes in anuran cranial ontogeny to parameters such as direct development or miniaturization is problematic because of the high evolvability of cranial ossification sequences. Rank variation analysis suggests that anuran cranial bones are highly variable in their sequence positioning, possibly because tadpole and adult cranial morphology do not co‐evolve. Elements which are lost in some species ossify at the end of the sequence, providing evidence for the notion that failure of anuran cranial elements to ossify is due to processes of paedomorphosis.  相似文献   

11.
We assess cranial neural-crest cell migration and contributions to the larval chondrocranium in the phylogenetically basal and morphologically generalized anuran Bombina orientalis (Bombinatoridae). Methods used include microdissection, scanning electron microscopy, and vital dye labeling, in conjunction with confocal and fluorescence microscopy. Cranial neural-crest cells begin migrating before neural-fold closure and soon form three primary streams. These streams contribute to all cranial cartilages except two medial components of the hyobranchial skeleton (basihyal and basibranchial cartilages), the posterior portion of the trabecular plate, and the otic capsule, the embryonic origin of which is unknown. Chondrogenic fate is regionalized within the cranial neural folds, with the anterior regions contributing to anterior cartilages and the posterior regions to posterior cartilages. A neural-crest contribution also was consistently observed in several cranial nerves and the connective tissue component of many cranial muscles. Notwithstanding minor differences among species in the initial configuration of migratory streams, cranial neural-crest migration and chondrogenic potential in metamorphosing anurans seem to be highly stereotyped and evolutionarily conservative. This includes a primary role for the neural crest in the evolutionary origin of the paired suprarostral and infrarostral cartilages, two prominent caenogenetic features of the rostral skull unique to anuran larvae. Our results provide a model of the ancestral pattern of embryonic head development in anuran amphibians. This model can serve as a basis for examining the ontogenetic mechanisms that underlie the diversity of cranial morphology and development displayed by living frogs, as well as the evolutionary consequences of this diversity. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The contribution of cranial neural crest cells to the development and patterning of cranial muscles in amphibians was investigated in the phylogenetically basal and morphologically generalized frog, Bombina orientalis. Experimental methods included fluorescent marking of premigratory cranial neural crest and extirpation of individual migratory streams. Neural crest cells contributed to the connective tissue component, but not the myofibers, of many larval muscles within the first two branchial arches (mandibular and hyoid), and complex changes in muscle patterning followed neural crest extirpation. Connective tissue components of individual muscles of either arch originate from the particular crest migratory stream that is associated with that arch, and this relationship is maintained regardless of the segmental identity-or embryonic derivation-of associated skeletal components. These developmental relations define a pattern of segmentation in the head of larval anurans that is similar to that previously described in the domestic chicken, the only vertebrate that has been thoroughly investigated in this respect. The fundamental role of the neural crest in patterning skeleton and musculature may represent a primitive feature of cranial development in vertebrates. Moreover, the corresponding developmental processes and cell fates appear to be conserved even when major evolutionary innovations-such as the novel cartilages and muscles of anuran larvae-result in major differences in cranial form.  相似文献   

13.
Introduced species are frequently believed to have adverse effects on native biota and ecosystems. However, much of our knowledge of the ecological impacts of introduced species is anecdotal, and the mechanisms controlling these effects are often poorly understood. I used replicated artificial pond experiments to investigate the impact of eggs and hatchlings of the introduced toad Bufo marinus on populations of native anuran larvae (Limnodynastes ornatus and Litoria rubella) in Australia. Bufo marinus eggs and hatchlings are highly toxic to predatory native tadpoles. Under naturalistic conditions, populations of predatory L. ornatus tadpoles experienced significantly reduced survival when exposed to Bufo eggs and hatchlings. The impact of Bufo on L. ornatus survival was positively correlated with Bufo density. However, the toxic effects of Bufo on L. ornatus indirectly facilitated the survival of later-breeding L. rubella by altering predator-prey interactions between L. ornatus and L. rubella. Limnodynastes ornatus tadpoles are voracious predators of L. rubella eggs and hatchlings. Consequently, the negative impact of Bufo on populations of L. ornatus tadpoles reduced the intensity of predation by L. ornatus tadpoles on L. rubella eggs and hatchlings, thereby increasing L. rubella survival. The results demonstrate that B. marinus plays an important role in structuring native larval anuran communities via direct and indirect mechanisms, and that Bufo may have both negative and positive effects on populations of native anuran larvae. As far as I am aware, these are the first quantitative data to demonstrate that introduced fauna may affect populations of native biota via toxic effects.  相似文献   

14.
The Lower Cretaceous anuran Shomronella jordanica (Pipoidea) is represented by an assemblage of nearly 300 tadpoles of different ages. The size of the assemblage allows a reconstruction of the larval ontogeny of this species. We describe the ossification sequence and growth rates of S. jordanica and present reconstructions of tadpoles at different stages. The ontogeny of the species seems to be similar to that of extant pipids in many aspects. Larvae are similar in shape and size to those of Xenopus laevis but lack the anterior barbels that are typical for all extant pipids. The ossification sequence is closer to that of pipids than to that of other anurans. We present evidence that suggests that this species was terrestrial as an adult, and we discuss the implications of these data for the evolution of anuran development.  相似文献   

15.
16.
In total, 462 tadpoles and salamander larvae of 8 species were examined for the presence of Gyrinicola batrachiensis from 5 locations in Nebraska. Infection by G. batrachiensis occurred in tadpoles of Rana blairi , Rana catesbeiana, Rana pipiens, and Bufo woodhousii. Tadpoles of Hyla chrysoscelis , Spea bombifrons, and Pseudacris maculata and larvae of Ambystoma mavortium were not infected with G. batrachiensis. Population structure, defined as prevalence, mean abundance, and mean intensity of G. batrachiensis, varied among tadpoles of different amphibian species and was determined by collection locality, developmental period of tadpole hosts, amphibian species co-occurrence, and different reproductive strategies of G. batrachiensis , or a combination. Gyrinicola batrachiensis observed in all ranid tadpoles and B. woodhousii tadpoles from where bufonids were the only anuran species present, confirmed to the didelphic haplodiploidy and monodelphic parthenogenetic reproductive strategies, respectively. However, tadpoles of B. woodhousii that co-occurred with tadpoles of R. pipiens at Cedar Creek were inconsistent with these predictions and contained both male and didelphic female nematodes, but at a low mean intensity (1.61 ± 0.70). Didelphic female nematodes from B. woodhousii tadpoles at Cedar Creek only produced thick-shelled eggs, whereas nematodes in R. pipiens tadpoles had a high mean intensity (14.88 ± 23.83) from this location and contained both thick-shelled and thin-shelled eggs in their respective uteri. More importantly, adult female nematodes from tadpoles of R. pipiens and B. woodhousii from Cedar Creek were morphologically more similar to each other than to female nematodes recovered from tadpoles of other anuran species, other locations, or both. These data suggest that when strains of G. batrachiensis are shared by tadpoles of different amphibian species that differ in developmental period, the nematodes have an intermediate reproductive strategy in amphibian species, with tadpoles having short development.  相似文献   

17.
The vertebrate head as a major novelty is directly linked to the evolutionary success of the vertebrates. Sequential information on the embryonic pattern of cartilaginous head development are scarce, but important for the understanding of its evolution. In this study, we use the oriental fire bellied toad, Bombina orientalis, a basal anuran to investigate the sequence and timing of larval cartilaginous development of the head skeleton from the appearance of mesenchymal Anlagen in post-neurulation stages until the premetamorphic larvae. We use different methodological approaches like classic histology, clearing and staining, and antibody staining to examine the larval skeletal morphology. Our results show that in contrast to other vertebrates, the ceratohyals are the first centers of chondrification. They are followed by the palatoquadrate and the basihyal. The latter later fuses to the ceratohyal and the branchial basket. Anterior elements like Meckel's cartilage and the rostralia are delayed in development and alter the ancestral anterior posterior pattern observed in other vertebrates. The ceratobranchials I–IV, components of the branchial basket, follow this strict anterior–posterior pattern of chondrification as reported in other amphibians. Chondrification of different skeletal elements follows a distinct pattern and the larval skeleton is nearly fully developed at Gosner Stage 28. We provide baseline data on the pattern and timing of early cartilage development in a basal anuran species, which may serve as guidance for further experimental studies in this species as well as an important basis for the understanding of the evolutionary changes in head development among amphibians and vertebrates.  相似文献   

18.
19.
A controversial issue in anuran systematics is the relationship of Leiopelma to other anurans because recent phylogenetic constructions imply different relationships among the basal frogs. Of particular evolutionary interest is whether early development of Leiopelma resembles an ancestral salamander-like larva, an anuran tadpole, or neither. In the 1950s, Neville G. Stephenson hypothesized that direct development is the primary mode of development in amphibians, based on the fact that Leiopelma spp. lack a free-living (=feeding) larval stage. Although this hypothesis has not been generally accepted, it has not been formally refuted. We review Stephenson's work on Leiopelma and examine the anatomy of embryos/"larvae" of the four extant Leiopelma species for evidence of vestigial larval features that might refute the "direct-developing ancestor" hypothesis. We describe internal oral features in early developmental stages of Leiopelma and compare Leiopelma with a closely related basal anuran, Ascaphus, to assess whether their early developmental stages share any derived features. In Leiopelma hochstetteri, embryos/larvae have open gill slits and some faint rugosities around one gill slit that may be vestiges of gill rakers or filters. They also have more intestinal loops, indicative of an elongated alimentary tract, at earlier rather than late embryonic/larval stages. Collectively, these features support the view that the ancestor of Leiopelma had a free-swimming, free-feeding, aquatic larva. The palatoquadrate of Leiopelma archeyi reorients approximately 40 degrees from a more horizontal to a more vertical position through embryonic/"larval" development. This amount of cranial remodeling is intermediate between that seen in salamanders (17-27 degrees) and that reported for Ascaphus (64 degrees ) and other basal frogs (71-78 degrees) at metamorphosis. We found no internal oral features that Leiopelma shares specifically with Ascaphus. However, Leiopelma embryos have a ventrally positioned mouth and a downturned rostrum, characteristic of Ascaphus and other stream-adapted tadpoles.  相似文献   

20.
The comparative vertebral morphology of the atlas–axis complex in cordyliforms, xantusiid and several skinks is studied here. These lizards are particularly interesting because of their different ecological adaptations and anti‐predation strategies, where conformation ranges from the lizard‐like body to a snake‐like body. This transition to serpentiform morphology shows several evolutionary patterns in the atlas–axis complex: 1) the zygapophyseal articulations are lost in the early stage of the transition. In contrast to mammals, the atlas is more or less locked to the axis in lepidosaurs, but the absence of zygapophyseal articulation releases this locking for rotation. However despite its serpentiform morphology, Chamaesaura is different, in possessing this articulation; 2) the first intercentrum of Chamaesaura and Tetradactylus africanus (serpentiform grass‐swimmers) is fully curved anteriorly, underlying the occipital condyle. While this limits ventral skull rotation beyond a certain angle, it locks the skull, which is a crucial adaptation for a sit‐and‐wait position in grassland habitats that needs to keep the head stabilized; and 3) in Acontias, most of the atlas articular surface with the occipital condyle is formed by the lateral aspect of the articulation area relative to the area located in the dorsal region of the slightly reduced intercentrum. A similar state occurs in amphisbaenians, most likely reflecting a fossorial lifestyle of the limbless lizards. Although Chamaesaura and Tetradactylus live sympatrically in grasslands, Chamaesaura differs in several ways in atlas–axis complex: for example, aforementioned presence of the atlas–axis zygapophyseal articulation, and long posterodorsal processes. Its occipital condyle protrudes further posteriorly, placing the atlas–axis complex further from the endocranium than in Tetradactylus. Hence, adaptation in the same niche, even among sister clades, can lead to different atlas–axis morphology due to different lifestyle strategies, for example, different foraging mode, while similar atlas–axis morphology can evolve in two lineages occupying different niches, as in Ablepharus and Scelotes. J. Morphol. 277:512–536, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号