首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Is ZFY the sex-determining gene on the human Y chromosome?   总被引:3,自引:0,他引:3  
The sex-determining region of the human Y chromosome contains a gene, ZFY, that encodes a zinc-finger protein. ZFY may prove to be the testis-determining factor. There is a closely related gene, ZFX, on the human X chromosome. In most species of placental mammals, we detect two ZFY-related loci: one on the Y chromosome and one on the X chromosome. However, there are four ZFY-homologous loci in mouse: Zfy-1 and Zfy-2 map to the sex-determining region of the mouse Y chromosome, Zfx is on the mouse X chromosome, and a fourth locus is autosomal.  相似文献   

2.
3.
牦牛与其他物种ZFX/ZFY基因片段间的进化关系   总被引:1,自引:0,他引:1  
利用PCR扩增、克隆和序列分析法对牦牛ZFX/ZFY基因第11外显子部分片段进行了研究,并同来自于NCBI GenBank中人、猩猩、普通牛等9个物种的ZFX/ZFY基因核苷酸及其氨基酸序列进行了进化分析.结果表明,牦牛ZFX、ZFY基因间核苷酸序列同源性为94.1%,显示同一物种同源基因ZFX/ZFY间存在变异;比较的10个物种间ZFX基因核苷酸序列同源性为87.7%、ZFY基因为81.7%,相应ZFX、ZFY氨基酸同源性分别为96.6%、91.0%,ZFY基因的变异性大于ZFX基因,显示X染色体与Y染色体可能是独立进化.  相似文献   

4.
5.
A growing body of evidence suggests the involvement of sex chromosome genes in mammalian development. We report the cloning and characterization of the complete coding regions of the bovine Y chromosome ZFY and X chromosome ZFX genes, and partial coding regions of porcine and equine ZFX and ZFY genes. Bovine ZFY and ZFX are highly similar to each other and to ZFX and ZFY from other species. While bovine and human ZFY proteins are both 801 amino acids long, bovine ZFX is 5 amino acids shorter than human ZFX. Like in humans, both bovine ZFY and ZFX contain 13 zinc finger motifs and belong to the Krueppel family of C2H2-type zinc finger proteins. The internal exon-intron organization of the bovine, porcine and equine ZFX and ZFY genes has been determined and compared. Within this region, the exon lengths and the positions of the splice sites are conserved, further suggesting a high evolutionary conservation of the ZFX and ZFY genes. Additionally, new alternatively spliced forms of human ZFX have been identified.  相似文献   

6.
7.
Wild populations of Akodon azarae comprise females with a karyotype indistinguishable from that of males. These individuals were formerly assumed to be Xx, the x being an X chromosome with a deletion of most of its long arm. By using a DNA probe derived from the testis-determining region of the human Y chromosome (comprising a candidate gene for the testis-determining factor, Y-linked zinc finger [ZFY]), we demonstrate that A. azarae gonosomally variant females are XY and not Xx. The ZFY sequences in A. azarae are amplified and located in two different families of EcoRI fragments derived from Y-chromosome DNA. No rearrangement or change in the state of methylation of ZFY or ZFX (X-linked zinc finger) sequences were found in XY females. We propose that sex reversal in A. azarae may be mediated by a gene or genes other than ZFX or ZFY.  相似文献   

8.
We have sequenced the partial exon of the zinc finger genes (ZFX and ZFY) in 5 hominoids, 2 Old World monkeys, 1 New World monkey, and 1 prosimian. Among these primate species, the percentage similarities of the nucleotide sequence of the ZFX gene were 96-100% and 91.2-99.7% for the ZFY gene. Of 397 sites in the ZFX and ZFY gene sequences, 20 for ZFX gene and 42 for ZFY gene were found to be variable. Substitution causes 1 amino acid change in ZFX, and 5 in ZFY, among 132 amino acids. The numbers of synonymous substitutions per site (Ks) between human and the chimpanzee, gorilla and orangutan for ZFY gene were 0.026, 0.033, and 0.085, respectively. In contrast, the Ks value between human and hominoid primates for the ZFX gene was 0.008 for each comparison. Comparison of the ZFX and ZFY genes revealed that the synonymous substitution levels were higher in hominoids than in other primates. The rates of synonymous substitution per site per year were higher in the ZFY exon than in the SRY exon, and higher in the ZFY exon than in the ZFY intron, in hominoid primates.  相似文献   

9.
ZFY, a gene on the Y chromosome encoding a zinc finger protein, has been proposed as a candidate for the human testis determining gene. Sequences related to ZFY, called ZFX, are present on the X chromosome of a wide range of placental mammals. Unlike most mammals the mouse has four genes homologous to ZFY; two on the Y chromosome, Zfy-1 and Zfy-2, an X-linked gene, Zfx, and an autosomal gene, Zfa. We show here that Zfa has arisen recently by retroposition of one of at least three alternatively spliced mRNAs transcribed from the Zfx gene. Zfa is an unusual retroposon in that it has retained an open reading frame and is expressed, although its function may be limited or altered by the presence of a potentially inactivating mutation in the third of its zinc fingers. This mutation must have occurred at the same time or soon after the retroposition event as it is also present in the Zfa gene of Mus spretus. Interestingly the third finger of the M. musculus musculus Zfy-2 gene has also sustained a mutation suggesting that this gene family may be rapidly evolving in mice.  相似文献   

10.
To investigate the molecular phylogeny and evolution of the family Canidae, nucleotide sequences of the zinc-finger-protein gene on the Y chromosome (ZFY, 924-1146 bp) and its homologous gene on the X chromosome (ZFX, 834-839 bp) for twelve canid species were determined. The phylogenetic relationships among species reconstructed by the paternal ZFY sequences closely agreed with those by mtDNA and autosomal DNA trees in previous reports, and strongly supported the phylogenetic affinity between the wolf-like canids clade and the South American canids clade. However, the branching order of some species differed between phylogenies of ZFY and ZFX genes: Cuon alpinus and Canis mesomelas were included in the wolf-like canid clades in the ZFY tree, whereas both species were clustered in a group of Chrysocyon brachyurus and Speothos venaticus in the ZFX tree. The topology difference between ZFY and ZFX trees may have resulted from the two-times higher substitution rate of the former than the latter, which was clarified in the present study. In addition, two types of transposable element sequence (SINE-I and SINE-II) were found to occur in the ZFY final intron of the twelve canid species examined. Because the SINE-I sequences were shared by all the species, they may have been inserted into the ZFY of the common ancestor before species radiation in Canidae. By contract, SINE-II found in only Canis aureus could have been inserted into ZFY independently after the speciation. The molecular diversity of SINE sequences of Canidae reflects evolutionary history of the species radiation.  相似文献   

11.
Campomelic dysplasia (Cd) occurs combined with sex reversal resulting in XY females. The recent identification of candidate genes for sex determination/differentiation and of a sex determining region on the human Y chromosome prompted the authors to study these genes for mutations in patients with Cd and sex reversal. In a total of five cases, no evidence for a mutation in the genes SRY, ZFY, ZFX, MEA and some anonymous Y-linked sequences was found. In addition to Southern analysis, gene expression of ZFY, ZFX and MEA was found to be normal as well. It is concluded that sex reversal in this condition is due to mutation in a so far unidentified gene which may act secondary to the testis-determining factor (TDF).  相似文献   

12.
A sex-reversal syndrome appears frequently in the horse. The mare carriers of this syndrome lack of SRY gene. It is suggested that sex-reversal syndrome is probably caused by transfer of the SRY gene from Y to the X chromosome, due to abnormal meiotic exchange. The aim of the study was molecular analysis of the Y-linked genes in a case of the sex-reversed infertile mare with 64,XY karyotype. The karyotype was established on the basis of analysis of 350 metaphase spreads stained by CBG banding. Molecular analysis of the loci assigned to the Y chromosome revealed absence of the SRY gene and presence of the other studied loci (ZFY, AMEL-Y and STS-Y). In this animal all fragments representing X chromosome (ZFX, AMEL-X and STS-X) were detected. External genitalia in the mare were normal, uterus was small and ovaries (examined by ultrasonography) extremely small. The mechanism of sex-reversal syndrome formation was discussed. It is postulated that during spermatogenesis in the sire two crossing-over events between the X and Y chromosomes occurred. One of them took place between the ZFY and SRY loci and another one between the SRY locus and the centromere.  相似文献   

13.
DNA variability was investigated in the last intron of the Y-chromosome-specific zinc finger gene, ZFY, and its X homolog on Xp21.3, ZFX. No polymorphisms were found in the 676-bp ZFY segment in a sample of 205 world-wide-distributed Y chromosomes, other than a solitary nucleotide variant in one individual (nucleotide diversity pi = 0.0014%). In contrast, 10 segregating sites (pi = 0.082%) were identified within 1,089 bp of the ZFX sequence in a sample of 336 X chromosomes. Four of these polymorphisms, which contributed most of the diversity, were located within an Alu insert disrupting the ZFY-ZFX homology (pi Alu = 0.24%). The diversity in the homologous portion of the ZFX intron, although higher than that in ZFY, was lower than that found in genomic segments believed to evolve neutrally; interspecies divergence in both segments was also reduced. Although this suggests that the evolution of both ZFY and ZFX homologs may not be entirely neutral, both Tajima and HKA tests did not reject neutrality. The lack of statistical significance may be attributed to a lack of power in these tests (the low divergence and variability values reduce the power of the HKA and Tajima tests, respectively); furthermore, Homo sapiens has recently undergone a rapid population growth, and selection is more difficult to detect in an expanding population. Therefore, the failure to reject neutrality does not necessarily indicate the absence of selection. In this context, the phylogenetic argument was given more weight in out interpretations. The high level of sequence identity in ZFY and ZFX segments, in spite of their separation 80-130 MYA, reflects a lower mutation rate as compared with other segments believed to undergo unconstrained evolution. Thus, the possibility of weak selection contributing to the low level of nucleotide diversity in the last ZFY intron cannot be excluded and should be kept in mind in the population genetics studies based on Y chromosome variability.  相似文献   

14.
Sequence polymorphism of homologues ZFX and ZFY, in a 604-base pair exon region, was examined in 10 known males and 10 known females across seven cetacean families and used to design a simple, highly sensitive and widely applicable fluorescent 5' exonuclease assay for gender determination in cetaceans. Multiplex amplification, cloning, and sequencing of these previously uncharacterized regions revealed (i) eight fixed differences between ZFX and ZFY, (ii) 29 variable sites between ZFX and ZFY and (iii) very low interspecific nucleotide diversity for both ZFX and ZFY across all families examined. We developed a 5' exonuclease assay that produces a small (105 bp) polymerase chain reaction (PCR) product from both the X and the Y chromosome orthologs, and used double-labelled fluorescent probes to distinguish between the two genes in a real-time PCR assay that is highly reproducible and sensitive. We demonstrated sex specificity for 33 cetacean species in nine families. Given the availability of conserved primers and sequence information for many mammalian species, this approach to designing sexing assays for a wide range of species is both practical and efficient.  相似文献   

15.
16.
Qiao Y  Zou F  Wei K  Yue B 《Zoological science》2007,24(5):493-495
We describe a rapid sex-identification method for the forest musk deer (Moschus berezovskii) using PCR based on zinc-finger protein-encoding genes (ZFX/ZFY) located on the X and Y chromosomes. Fragments of the ZFX and ZFY genes were amplified and sequenced. The ZFX and ZFY fragments were identical in length and 94% similar in nucleotide sequence. Specific primers for forest musk deer sex identification were designed on the basis of sequence differences between ZFX and ZFY. All the primers were multiplexed in single-tube PCR. Both male and female forest musk deer showed amplification bands of 447 bp and 212 bp separated in agarose gels. A sex-specific 278-bp band was amplified only from males. These results show that testing by PCR for the presence of the 278-bp sequence is a rapid and reliable method for sex identification.  相似文献   

17.
Recently a candidate gene for the primary testis-determining factor (TDF) encoding a zinc finger protein (ZFY) has been cloned from the human Y chromosome. A highly homologous X-linked copy has also been identified. Using this human sequence it is possible to identify two Y loci, an X and an autosomal locus in the mouse (Zfy-1, Zfy-2, Zfx and Zfa, respectively). Suprisingly ZFY is more homologous to the mouse X and autosomal sequences than it is to either of the Y-linked loci. Both Zfy-1 and Zfy-2 are present in the Sxr region of the Y but Zfy-2 is absent in the Sxr deletion variant Sxrb (or Sxr") suggesting it is not necessary for male determination. Extensive backcross analyses map Zfa to mouse chromosome 10 and Zfx to a 5-cM interval between anonymous X probe MDXS120 and the tabby locus (Ta). We also show that the mouse androgen receptor locus (m-AR) believed to underlie the testicular feminization mutation (Tfm) shows complete linkage to Zfx. Comparative mapping indicates that in man these genes lie in separate conserved DNA segments.  相似文献   

18.
Mapping the human ZFX locus to Xp21.3 by in situ hybridization   总被引:6,自引:0,他引:6  
Summary In situ hybridization using a probe specific for the human ZFX and ZFY loci assigns the ZFX gene to Xp21.3 and the ZFY gene to Yp11.32.  相似文献   

19.
We sequenced 540 nucleotides of the last exon in the ZFY/ZFX gene in two males and two females for eight cetacean species; four odontocetes (toothed whales) and four mysticetes (baleen whales). Based upon the obtained nucleotide sequences, we designed two sets of oligonucleotide primers for specific amplification of the ZFX and the ZFY sequence in odontocetes and mysticetes, respectively. Each primer set consisted of three oligonucleotides; one forward-orientated primer, which anneals to the ZFY as well as the ZFX sequence, and two reverse-orientated primers that anneal to either the ZFX or the ZFY sequence. The resulting two amplification products (specific for the ZFY and ZFX sequences) can be distinguished by gel-electrophoresis through 2% NuSieve™. The accuracy of the technique was tested by determination of gender in 214 individuals of known sex. Finally we applied the technique to determine the sex of 3570 cetacean specimens; 2284 humpback whales, 315 fin whales, 37 blue whales, 7 minke whales, as well as 592 belugas, 335 narwhals and 25 harbour porpoises.  相似文献   

20.
Summary We report the isolation and nucleotide sequence determination of clones derived from five ZFY-related zinc-finger genes from birds and mammals. These sequences are analyzed with reference to the previously published human genes, ZFX and ZFY, and mouse genes, Zfx, Zfa, Zfy-1, and Zfy-2. The analysis indicates that ZFY-related genes are highly conserved in birds and mammals, and that the rate of nucleotide substitution in the Y-linked genes is not as high as predicted. However, the mouse Zfy-1 and Zfy-2 genes are markedly divergent members of the ZFY gene family; we suggest this relates to X-inactivation of the mouse gene Zfx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号