首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
RhoA is involved in multiple cellular processes, including cytoskeletal organization, gene expression, and transformation. These processes are mediated by a variety of downstream effector proteins. However, which effectors are involved in cellular transformation and how these proteins are activated following interaction with Rho remains to be established. A unique feature that distinguishes the Rho family from other Ras-related GTPases is the insert region, which may confer Rho-specific signaling events. Here we report that deletion of the insert region does not result in impaired effector binding. Instead, this insert deletion mutant (RhoDeltaRas, in which the insert helix has been replaced with loop 8 of Ras) acted in a dominant inhibitory fashion to block RhoA-induced transformation. Since RhoDeltaRas failed to promote stress fiber formation, we examined the ability of this mutant to bind to and subsequently activate Rho kinase. Surprisingly, RhoDeltaRas-GTP coprecipitated with Rho kinase but failed to activate it in vivo. These data suggested that the insert domain is not required for Rho kinase binding but plays a role in its activation. The constitutively active catalytic domain of Rho kinase did not promote focus formation alone or in the presence of Raf(340D) but cooperated with RhoDeltaRas to induce cellular transformation. This suggests that Rho kinase needs to cooperate with additional Rho effectors to promote transformation. Further, the Rho kinase catalytic domain reversed the inhibitory effect of RhoDeltaRas on Rho-induced transformation, suggesting that one of the downstream targets of Rho-induced transformation abrogated by RhoDeltaRas is indeed Rho kinase. In conclusion, we have demonstrated that the insert region of RhoA is required for Rho kinase activation but not for binding and that this kinase activity is required to induce morphologic transformation of NIH 3T3 cells.  相似文献   

2.
3.
Activated GTPases of the Rho family regulate a spectrum of functionally diverse downstream effectors, initiating a network of signal transduction pathways by interaction and activation of effector proteins. Although effectors are defined as proteins that selectively bind the GTP-bound state of the small GTPases, there have been also several indications for a nucleotide-independent binding mode. By characterizing the molecular mechanism of RhoA interaction with its effectors, we have determined the equilibrium dissociation constants of several Rho-binding domains of three different effector proteins (Rhotekin, ROCKI/ROK beta/p160ROCK, PRK1/PKNalpha where ROK is RhoA-binding kinase) for both RhoA.GDP and RhoA.GTP using fluorescence spectroscopy. In addition, we have identified two novel Rho-interacting domains in ROCKI, which bind RhoA with high affinity but not Cdc42 or Rac1. Our results, together with recent structural data, support the notion of multiple effector-binding sites in RhoA and strongly indicate a cooperative binding mechanism for PRK1 and ROCKI that may be the molecular basis of Rho-mediated effector activation.  相似文献   

4.
5.
Modulation of HIV-1 replication by a novel RhoA effector activity   总被引:3,自引:0,他引:3  
The RhoA GTPase is involved in regulating actin cytoskeletal organization, gene expression, cell proliferation, and survival. We report here that p115-RhoGEF, a specific guanine nucleotide exchange factor (GEF) and activator of RhoA, modulates HIV-1 replication. Ectopic expression of p115-RhoGEF or Galpha13, which activates p115-RhoGEF activity, leads to inhibition of HIV-1 replication. RhoA activation is required and the inhibition affects HIV-1 gene expression. The RhoA effector activity in inhibiting HIV-1 replication is genetically separable from its activities in transformation of NIH3T3 cells, activation of serum response factor, and actin stress fiber formation. These findings reveal that the RhoA signal transduction pathway regulates HIV-1 replication and suggest that RhoA inhibits HIV-1 replication via a novel effector activity.  相似文献   

6.
7.
8.
9.
The small GTPase RhoA regulates a wide spectrum of cellular functions including transformation and cytoskeletal reorganization. A large number of proteins have been identified as targets of RhoA, but their specific roles in these processes are not clear. Phospholipase D (PLD) was shown to be one such target several years ago; more recent work from our laboratory and others has demonstrated that of the two mammalian PLD isozymes, PLD1 but not PLD2 is activated by RhoA and this activation proceeds through direct binding both in vitro and in vivo. In this study, using a series of RhoA mutants, we have defined a PLD1-specific interacting site on RhoA composed of the residues Asn41, Trp58 and Asp76, using the yeast two-hybrid system, co-immunoprecipitation, and a PLD in vivo assay. The results further substantiate our previous finding that RhoA activates PLD1 through direct interaction. These mutants were then used to investigate the role of PLD1 in the cytoskeletal reorganization stimulated by RhoA signaling. Our results show that PLD1 is not required for the RhoA-mediated stress fiber and focal adhesion formation. The lack of importance of PLD1 signaling in RhoA-mediated cytoskeletal reorganization is further supported by the observation that PLD1 depletion using an shRNA approach and tetracycline-induced overexpression of the wild-type and the catalytically inactive mutant of PLD1 in stable cell lines do not alter stress fiber and focal adhesion formation.  相似文献   

10.
11.
12.
13.
The small GTPase RhoA controls activity of serum response factor (SRF) by inducing changes in actin dynamics. We show that in PC12 cells, activation of SRF after serum stimulation is RhoA dependent, requiring both actin polymerization and the Rho kinase (ROCK)-LIM kinase (LIMK)-cofilin signaling pathway, previously shown to control F-actin turnover. Activation of SRF by overexpression of wild-type LIMK or ROCK-insensitive LIMK mutants also requires functional RhoA, indicating that a second RhoA-dependent signal is involved. This is provided by the RhoA effector mDia: dominant interfering mDia1 derivatives inhibit both serum- and LIMK-induced SRF activation and reduce the ability of LIMK to induce F-actin accumulation. These results demonstrate a role for LIMK in SRF activation, and functional cooperation between RhoA-controlled LIMK and mDia effector pathways.  相似文献   

14.
15.
16.
The Ras family of small GTPases regulates cell proliferation, spreading, migration and apoptosis, and malignant transformation by binding to several protein effectors. One such GTPase, R-Ras, plays distinct roles in each of these processes, but to date, identified R-Ras effectors were shared with other Ras family members (e.g., H-Ras). We utilized a new database of Ras-interacting proteins to identify RLIP76 (RalBP1) as a novel R-Ras effector. RLIP76 binds directly to R-Ras in a GTP-dependent manner, but does not physically associate with the closely related paralogues H-Ras and Rap1A. RLIP76 is required for adhesion-induced Rac activation and the resulting cell spreading and migration, as well as for the ability of R-Ras to enhance these functions. RLIP76 regulates Rac activity through the adhesion-induced activation of Arf6 GTPase and activation of Arf6 bypasses the requirement for RLIP76 in Rac activation and cell spreading. Thus, we identify a novel R-Ras effector, RLIP76, which links R-Ras to adhesion-induced Rac activation through a GTPase cascade that mediates cell spreading and migration.  相似文献   

17.
18.
Jeon H  Kwak D  Noh J  Lee MN  Lee CS  Suh PG  Ryu SH 《Cellular signalling》2011,23(8):1320-1326
Phospholipase D (PLD) is involved in diverse cellular processes including cell movement, adhesion, and vesicle trafficking through cytoskeletal rearrangements. However, the mechanism by which PLD induces cytoskeletal reorganization is still not fully understood. Here, we describe a new link to cytoskeletal changes that is mediated by PLD2 through direct nucleotide exchange on RhoA. We found that PLD2 induces RhoA activation independent of its lipase activity. PLD2 directly interacted with RhoA, and the PX domain of PLD2 specifically recognized nucleotide-free RhoA. Finally, we found that the PX domain of PLD2 has guanine nucleotide-exchange factor (GEF) activity for RhoA in vitro. In addition, we verified that overexpression of the PLD2-PX domain induces RhoA activation, thereby provoking stress fiber formation. Together, our findings suggest that PLD2 functions as an upstream regulator of RhoA, which enables us to understand how PLD2 regulates cytoskeletal reorganization in a lipase activity-independent manner.  相似文献   

19.
Salmonella enterica serovar typhimurium translocates a glycerophospholipid:cholesterol acyltransferase (SseJ) into the host cytosol after its entry into mammalian cells. SseJ is recruited to the cytoplasmic face of the host cell phagosome membrane where it is activated upon binding the small GTPase, RhoA. SseJ is regulated similarly to cognate eukaryotic effectors, as only the GTP-bound form of RhoA family members stimulates enzymatic activity. Using NMR and biochemistry, this work demonstrates that SseJ competes effectively with Rhotekin, ROCK, and PKN1 in binding to a similar RhoA surface. The RhoA surface that binds SseJ includes the regulatory switch regions that control activation of mammalian effectors. These data were used to create RhoA mutants with altered SseJ binding and activation. This structure-function analysis supports a model in which SseJ activation occurs predominantly through binding to residues within switch region II. We further defined the nature of the interaction between SseJ and RhoA by constructing SseJ mutants in the RhoA binding surface. These data indicate that SseJ binding to RhoA is required for recruitment of SseJ to the endosomal network and for full Salmonella virulence for inbred susceptible mice, indicating that regulation of SseJ by small GTPases is an important virulence strategy of this bacterial pathogen. The dependence of a bacterial effector on regulation by a mammalian GTPase defines further how intimately host pathogen interactions have coevolved through similar and divergent evolutionary strategies.  相似文献   

20.
Activation of RhoA prevents NGF-induced outgrowth and causes retraction of neurites in neuronal cells, including PC12 cells. Despite its inhibitory effect on neurite outgrowth, NGF activates GTP loading of and effector binding to RhoA, setting up an apparent contradiction. According to the molecular switch hypothesis of GTPase function GTP-loading of RhoA should be sufficient to activate its effectors uniformly. However, when monitoring NGF-induced binding of GTP-RhoA to multiple targets, we noted differential interactions with its effectors. We found that NGF elicits a protein kinase A-mediated phosphorylation of RhoA on serine(188), which renders it unable to bind to Rho-associated kinase (ROK), whereas it retains the ability to interact with other RhoA targets including rhotekin, mDia-1 and PKN. We show in vitro and in vivo that phosphorylation of serine(188) represents an additional switch, capable of directing signals among effector pathways. In the context of PC12 cell differentiation, NGF-induced phosphorylation of RhoA on serine(188) prevents it from interacting with ROK, which would otherwise block neurite outgrowth. Transfection of RhoA(S188A) mutant into PC12 cells prevents NGF-induced neurite outgrowth, just like constitutively activated RhoA(14V) does, indicating the requirement of this phosphorylation site. Replacement of serine(188) with the phosphomimetic glutamate residue in RhoA(V14/S188E) selectively impairs interaction with ROK and when transfected into PC12 cells restores NGF-induced neurite outgrowth. Therefore, phosphorylation of serine(188) may serve as a novel secondary switch of RhoA capable of overriding GTP-binding-elicited effector activation to a subset of targets such as ROK, which interact with the C-terminus of RhoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号