首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
暗中培养的绿豆幼苗子叶在萌发后3—4天时,外观出现衰老征状,6天后子叶凋落。随子叶日龄的增加,子叶的呼吸强度一直下降,呼吸商始终小于1。当外加L—苹果酸、a—酮戊二酸、琥珀酸和NADH为底物测定离体线粒体氧化活性时,衰老子叶的线粒体对上述四种底物的氧化活性有不同程度的增加;抗氰呼吸也有所升高。子叶衰老时,线粒体的ADP/O和呼吸控制(RC值均降低);线粒体ATPase水解ATP的活性升高。衰老绿豆子叶线粒体氧化磷酸化偶联效率的降低和ATPase水解活性的增强是与线粒体结构改变相联系的一种功能变化,它导致能量亏缺,并进一步加速了衰老的恶化进程。  相似文献   

2.
A postulated role of the CN-resistant alternative respiratory pathway in plants is the maintenance of mitochondrial electron transport at low temperatures that would otherwise inhibit the main phosphorylating pathway and prevent the formation of toxic reactive oxygen species. This role is supported by the observation that alternative oxidase protein levels often increase when plants are subjected to growth at low temperatures. We used oxygen isotope fractionation to measure the distribution of electrons between the main and alternative pathways in mung bean (Vigna radiata) and soybean (Glycine max) following growth at low temperature. The amount of alternative oxidase protein in mung bean grown at 19°C increased over 2-fold in both hypocotyls and leaves compared with plants grown at 28°C but was unchanged in soybean cotyledons grown at 14°C compared with plants grown at 28°C. When the short-term response of tissue respiration was measured over the temperature range of 35°C to 9°C, decreases in the activities of both main and alternative pathway respiration were observed regardless of the growth temperature, and the relative partitioning of electrons to the alternative pathway generally decreased as the temperature was lowered. However, cold-grown mung bean plants that up-regulated the level of alternative oxidase protein maintained a greater electron partitioning to the alternative oxidase when measured at temperatures below 19°C supporting a role for the alternative pathway in response to low temperatures in mung bean. This response was not observed in soybean cotyledons, in which high levels of alternative pathway activity were seen at both high and low temperatures.  相似文献   

3.
The aim was to test the hypothesis that rotenone-insensive electron transport (bypass of complex I) may underlie rapid state 4 (ADP-limited) mitochondrial respiration. A comparison of mitochondria from soybean ( Glycine max L. cv. Bragg) cotyledons and nodules showed that ADP-sufficient (state 3) malate plus pyruvate oxidation by mitochondria from 7-day-old cotyledons was inhibited 50% by rotenone and state 4 rates were rapid, whereas nodule mitochondria were 80% inhibited by rotenone and had slower state 4 rates of malate plus pyruvate oxidation. Respiration of malate alone (pH 7.6) by cotyledon mitochondria was slow, especially in the absence of ADP; subsequent addition of pyruvate dramatically increased state 4 oxygen uptake concomitant with a rapid rise in mitochondrial NADH (determined by fluorimetry). Rotenone had no effect on this increased rate of state 4 respiration. The rate of malate oxidation by nodule mitochondria was relatively rapid compared with cotyledon mitochondria. The addition of pyruvate in state 4 caused a slow increase in matrix NADH and only a slight stimulation of oxygen uptake. Rotenone inhibited state 4 malate plus pyruvate oxidation by 50% in these mitochondria. From a large number of cotyledon and nodule mitochondrial preparations, a close correlation was found between the rate of state 4 oxygen uptake and rotenone-resistance. During cotyledon development increased rotenone-resistance was associated with an increase in the alternative oxidase. Addition of pyruvate to cotyledon mitochondria, during state 4 oxidation of malate in the presence of antimycin A, significantly stimulated O2 uptake and also almost eliminated respiratory control. Such combined operation of the rotenone-insensitive bypass and the alternative oxidase in vivo will significantly affect the extent to which adenylates control the rate of electron transport.  相似文献   

4.
Lo YS  Cheng N  Hsiao LJ  Annamalai A  Jauh GY  Wen TN  Dai H  Chiang KS 《The Plant cell》2011,23(10):3727-3744
Here, a large fraction of plant mitochondrial actin was found to be resistant to protease and high-salt treatments, suggesting it was protected by mitochondrial membranes. A portion of this actin became sensitive to protease or high-salt treatment after removal of the mitochondrial outer membrane, indicating that some actin is located inside the mitochondrial outer membrane. The import of an actin-green fluorescent protein (GFP) fusion protein into the mitochondria in a transgenic plant, actin:GFP, was visualized in living cells and demonstrated by flow cytometry and immunoblot analyses. Polymerized actin was found in mitochondria of actin:GFP plants and in mung bean (Vigna radiata). Notably, actin associated with mitochondria purified from early-developing cotyledons during seed germination was sensitive to high-salt and protease treatments. With cotyledon ageing, mitochondrial actin became more resistant to both treatments. The progressive import of actin into cotyledon mitochondria appeared to occur in concert with the conversion of quiescent mitochondria into active forms during seed germination. The binding of actin to mitochondrial DNA (mtDNA) was demonstrated by liquid chromatography-tandem mass spectrometry analysis. Porin and ADP/ATP carrier proteins were also found in mtDNA-protein complexes. Treatment with an actin depolymerization reagent reduced the mitochondrial membrane potential and triggered the release of cytochrome C. The potential function of mitochondrial actin and a possible actin import pathway are discussed.  相似文献   

5.
Bean plants ( Phaseolus vulgaris ) were grown for 16–20 days with or without phosphate in Knop nutrient medium. It was found in previous experiments that for roots grown on a Pi-deficient medium respiration is mainly carried out by the cyanide-insensitive pathway. Mitochondria isolated from—Pi, roots had poor respiratory control and their respiration exhibited 62% inhibition by cyanide and was inhibited (30%) by salicylhydroxamic acid (SHAM). In contrast, mitochondria obtained with control (+Pi) roots had respiratory control and ADP/O ratios typical for succinate as the substrate; their respiration was inhibited to 95% by cyanide and insensitive to SHAM. The integrity of mitochondrial membranes was similar in both types of mitochondria. Cytochrome oxidase activity, however, was about 20% lower in -Pi mitochondria, but the cytochrome composition was the same in both types of mitochondria. The cytochrorae pathway was not operating at full capacity in mitochondria isolated from—Pi roots but the alternative oxidation pathway participated in a great part in mitochondrial respiration, similar to in vivo whole roots. The participation of the non-phosphorylating., alternative pathway decreased the respiratory control ratio in mitochondria and had an effect on the total adenine nucleotide pool and energy charge values which were lower (16 and 13% respectively) in -Pi roots. About 50% lower ADP and 20% lower ATP levels were observed whereas AMP levels were several times higher.  相似文献   

6.
The effect of removal of the embryo on the properties of mitochondriain pea cotyledons was investigated. During imbibition of theseeds, mitochondrial activity was enhanced in the cotyledons.In later stages of germination, respiratory activity of themitochondria decreased gradually, and no response of the mitochondriato exogenous ADP was observed. Moreover, considerable activityof cytochrome oxidase wasrecovered in the post-mitochondrialfraction. Mitochondrial fractions isolated from senescent cotyledonscontained only fragmented particles of mitochondria. On theother hand, in cotyledons excised from the seeds and cultivatedunder wet condition, the initial development of mitochondriademonstrated in the attached cotyledons was suppressed. However,respiratory activity of the mitochondria increased in the laterstages of cultivation. The mitochondria remained unfragmentedand responded to exogenous ADP during all stages of cultivation.Also, a change in the density of mitochondria which occurredin the germinating attached cotyledons was delayed in the cultivatedexcised cotyledons. (Received February 27, 1973; )  相似文献   

7.
Twelve peptides, including eight conservative amino acid residues in the amino acid sequence of hydrophilic S helix of the alternative oxidase (AOX), were synthesized by solid-phase method. The polypeptide was coupled to αchymotrypsinogen, and the antibodies against this complex were obtained in rabbit. By using these antibodies, which were raised to immunoreact with total proteins of purified mitochondria from different organs of mung bean (Phaseolous radiatus L.) seedlings, it was found that there were two hybridizable AOX fractions in the mitochondria of mung bean seedlings. Their molecular weight was about 35 kD and 38 kD, respectively. Moreover, among the respiratory parameters obtained in hypocotyl, true leaf and cotyledon of mung bean seedlings true leaf had the highest total respiration (Vt), alternative pathway (AP) capacity(Valt) and the activity of AP (ρValt). Hypocotyl Vt and ρValt were the lowest, but its Vt was higher than that of the cotyledon. The activities of total and cyanide-resistant respiration were consistant with the analysis of Western blotting of AOX expression. The highest Vt and ρValt in true leaf were accompanied by two hybridizable polypeptides of AOX protein. The next was cotyledon Vt and ρValt with only one 38 kD hybridizable polypeptide of AOX protein. Hypocotyl Vt and ρValt were the lowest and its immunobloting band was similar to that of the cotyledon, but the expression amount of 38 kD protein was less than that of the cotyledon. The 35 kD AOX may make the main contribution to the true leaf ρValt.  相似文献   

8.
The effects of salicylic acid (SA) on mitochondrial respiration and generation of membrane potential across the inner membrane of mitochondria isolated from stored taproots of sugar beet (Beta vulgaris L.) and etiolated seedling cotyledons of yellow lupine (Lupinus luteus L.) were studied. When malate was oxidized in the presence of glutamate, low SA concentrations (lower than 1.0 mM) exerted predominantly uncoupling action on the respiration of taproot mitochondria: they activated the rate of oxygen uptake in State 4 (in the absence of ADP) and did not affect oxidation in State 3 (in the presence of ADP). In contrast, in lupine cotyledon mitochondria these SA concentrations inhibited oxygen uptake in the presence of ADP and much weaker activated substrate oxidation in State 4. Thus, SA (0.5 mM) reduced the respiratory control ratio according to Chance (RCR) by 25% in the taproots and 35% in cotyledons. When the concentration of phytohormone was increased (above 1.0 mM), malate oxidation in State 3 was inhibited and in State 4 — activated independently of the plant material used. In this case, the values of RCR and ADP/O were reduced by 50–60%. The effect of high SA concentrations (2 mM and higher) on malate oxidation depended on the duration of incubation and had a biphasic pattern: the initial activation of oxygen uptake was later replaced by its inhibition. The parallel studying the SA effect on the generation of membrane potential (ΔΨ) at malate oxidation in the mitochondria of beet taproots and lupine cotyledons showed that ΔΨ dissipation was observed because of SA uncoupling and inhibiting action on respiration. The degree of ΔΨ dissipation depended on the phytohormone concentration and duration on mitochondria treatment, especially at its high concentrations. In general, a correlation was found between the effects of SA on mitochondrial respiration and ΔΨ values in the coupling membranes. Furthermore, these results show that the responses of mitochondria to SA were determined not only by its concentration but also by treatment duration and evidently by the sensitivity to the phytohormone of mitochondria isolated from different plant tissues.  相似文献   

9.
The mitochondria isolated from dark-grown mung bean hypocotyls oxidize succinate, l-malate, and externally added reduced nicotine adenine dinucleotide (NADH) with good respiratory control. While the pattern of respiration resembles that of animal mitochondria, there are 4 basic differences between the respiratory properties of mung bean and animal mitochondria: A) the ability to oxidize NADH, B) the pattern of succinate and malate oxidation, C) the rate of oxygen uptake, and D) the adenosine-5′-diphosphate to oxygen ratios.  相似文献   

10.
Development of mitochondrial activities (state 3 respiration,respiratory control ratio, ADP/O ratio) in peanut cotyledonsoccurs over the first 5 d from the start of imbibition. Mitochondriain cotyledons with the axis attached develop better than inthose from which the axis has been removed. Initially, mitochondriaare deficient in cytochrome c, but after 2 d from the startof imbibition this deficiency is overcome. Mitochondrial developmentin attached cotyledons, as measured by state 3 respiration,respiratory control ratio, ADP/O ratio, and succinate dehydrogenaseand cytochrome oxidase activities, is severely impaired by cycloheximide.This indicates that de novo synthesis of proteins is necessaryfor mitochondria and their enzymes to develop, a situation whichis in sharp contrast to the situation in pea cotyledons. Electronmicroscope studies also show that there is an increase in thenumbers of mitochondria in peanut cotyledons with time afterthe start of imbibition. Two patterns of mitochondrial developmentexist in legumes: in imbibed peanut cotyledons respiratory activitiesincrease due to biogenesis of mitochondria, whereas in pea cotyledonsthe increases are due to improvement of pre-existing organelles  相似文献   

11.
实验结果表明:照光时绿豆叶片分离线粒体通过细胞色素氧化酶途径的NADH氧化部分受阻,电子转向交替途径。不产生能量,不受能荷控制的NADH氧化途径有利于绿色细胞线粒体在光合作用时执行其提供碳架的功能。看来绿色细胞线粒体本身具有对光的敏感性,在照光时调节呼吸途径以适应其功能的转换。呼吸途径的转换机制目前还不清楚。绿豆种子线粒体与叶片线粒体不同,没有上述的这种对光的反应。  相似文献   

12.
The effects of salicylic acid (SA) on the rate of respiration and the activity of cyanide-resistant sensitive to salicylhydroxamic acid oxidation pathway in detached etiolated cotyledons of yellow lupine (Lupinus luteus L.) and mitochondria isolated from these cotyledons were studied. Cotyledon treatment with 1 mM SA for 12 h increased the rate of oxygen uptake predominantly due to the activation of cyanide-resistant respiration (CRR) and alternative pathway of mitochondrial oxidation. It was established that the lupine genome encodes at least two isoforms of alternative oxidase (AO), LuAOX1 and LuAOX2, with the mol wt of about 35 kD. These proteins are always present in the mitochondria of etiolated lupine cotyledons, but their level increased rapidly after cotyledon treatment with SA, probably by increasing the mRNA content of the corresponding genes. SA-induced expression of Aox genes was correlated with the activation of CRR and an increase in the maximal activity (capacity) of AO in both detached yellow lupine cotyledons and mitochondria isolated from them.  相似文献   

13.
Candida albicans is an opportunistic oral pathogen. The flexibility of this microorganism in response to environmental changes includes the expression of a cyanide-resistant alternative respiratory pathway. In the present study, we characterized both conventional and alternative respiratory pathways and determined their ADP/O ratios, inhibitor sensitivity profiles and the impact of the utilization of either pathway on susceptibility to commonly used antimycotics. Oxygen consumption by isolated mitochondria using NADH or malate/pyruvate as respiratory substrates indicated that C. albicans cells express both cytoplasmic and matrix NADH-ubiquinone oxidoreductase activities. The ADP/O ratio was higher for malate/pyruvate (2.2±0.1), which generate NADH in the matrix, than for externally added NADH (1.4±0.2). In addition, malate/pyruvate respiration was rotenone-sensitive, and an enzyme activity assay further confirmed that C. albicans cells express Complex I activity. Cells grown in the presence of antimycin A expressed the cyanide-insensitive respiratory pathway. Determination of the respiratory control ratio (RCR) and ADP/O ratios of mitochondria from these cells indicated that electron transport from ubiquinone to oxygen via the alternative respiratory pathway was not coupled to ATP production; however, an ADP/O ratio of 0.8 was found for substrates that donate electrons at Complex I. Comparison of antifungal susceptibility of C. albicans cells respiring via the conventional or alternative respiratory pathways showed that respiration via the alternative pathway does not reduce the susceptibility of cells to a series of clinically employed antimycotics (using Fungitest®), or to the naturally occurring human salivary antifungal peptide, histatin 5.  相似文献   

14.
The effect of acute hypoxia on adenine nucleotides, glutamate, aspartate, alanine and respiration of heart mitochondria was studied in rats. The losses of intramitochondrial adenine nucleotides (ATP+ADP+AMP) during hypoxia were related to depression of state 3 respiration supported by glutamate and malate, as well as decrease in uncoupled respiration. Hypoxia had less prominent effect on succinate-dependent state 3 respiration. Non-phosphorylating (state 4) respiratory rates and ADP/O ratios were slightly affected by oxygen deprivation. Glutamate fall in tissue and mitochondria of hypoxic hearts was concomitant with significant increase in tissue alanine and mitochondrial aspartate. The losses of intramitochondrial ATP and respiratory activity with NAD-dependent substrates during hypoxia were related to a decrease in mitochondrial glutamate. The results suggest that hypoxia-induced impairment of complex I of respiratory chain and a loss of glutamate from the matrix may limit energy-producing capacity of heart mitochondria.  相似文献   

15.
Kutík  J.  Wilhelmová  N.  Snopek  J. 《Photosynthetica》1998,35(3):361-367
French bean (Phaseolus vulgaris L.) cotyledons lost most of their reserve substances during several early days of germination and turned green. In cotyledon mesophyll cells of one-week-old seedlings, plastids were represented predominantly by amyloplasts (starch grains) and chloroamyloplasts, and the cells appeared to be metabolically highly active. Cell heterogeneity associated with distance of the cells from cotyledon vascular bundles was evident. Only mesophyll cells near to the bundles were rich in plastids. In two-weeks-old intact bean plants, the cotyledons were yellow and shrunken, and their cells were nearly "empty". The plastids in them were represented by senescent plastids (gerontoplasts) only. In the gerontoplasts as well as freely in cytosol, fluorescent lipoid inclusions were accumulated. This cotyledon development was more or less independent of irradiance. In "decapitated" bean plants, senescence of mesophyll cells and plastids was slowed down considerably, and the life span of the cotyledons was prolonged.  相似文献   

16.
顽拗性种子脱落时具有较高的含水量和代谢活性, 对脱水高度敏感; 但顽拗性种子脱水敏感性的机理至今仍然不清楚。该文以顽拗性黄皮(Clausena lansium)种子为材料, 研究了种子和胚轴对水分丧失的响应, 在脱水过程中胚轴和子叶的呼吸速率, 胚轴和子叶线粒体的细胞色素c氧化酶(CCO)活性、外膜完整性、CCO和交替氧化酶(AOX)途径以及线粒体活性氧清除酶活性的变化。结果表明, 随着水分的丧失, 种子和胚轴的存活率逐渐下降, 种子的脱水敏感性大于胚轴; 胚轴和子叶的呼吸速率以及线粒体外膜的完整性降低。胚轴和子叶线粒体的CCO途径以及胚轴AOX途径的呼吸速率在脱水初期增加, 随着继续脱水下降, 胚轴线粒体AOX途径的呼吸速率则随着脱水显著下降。胚轴线粒体的超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性和子叶线粒体的APX活性随着脱水迅速下降; 胚轴线粒体的脱氢抗坏血酸还原酶(DHAR)活性和子叶线粒体的SOD、DHAR和GR活性在脱水初期增加, 然后下降。这些数据表明黄皮种子的脱水敏感性与线粒体的呼吸速率和活性氧清除酶的活性降低密切相关, 也与长期适应热带/亚热带的生境有关。  相似文献   

17.
《Phytochemistry》1986,25(11):2481-2487
Mitochondria were isolated from the cotyledons of pea (Pisum sativum cv Homesteader) and peanut (Arachis hypogaea cv Early Spanish) seeds over a 7-day growth period. The rate of mitochondrial oxygen uptake increased 3-4-fold during the first 4 days of growth and parallel changes were observed in the respiratory control and ADP/O ratios. In both species, the total cotyledonary pool of folate derivatives increased 3-4-fold during this period of germination whereas that associated with isolated mitochondria increased 5-10-fold. Until day 3 of growth, the mitochondrial folates were principally polyglutamates of 10-formyltetrahydrofolate but between day 4 and day 7 increasing levels of 5-methyltetrahydrofolate polyglutamates were detected. Pea and peanut mitochondria contained methionyl-tRNA transformylase (EC 2.1.2.9) activity that displayed an absolute requirement for 10-formyl-tetrahydrofolate. The specific activity of this enzyme rose during germination, reaching maximal levels between days 3 and 4. Isolated pea mitochondria had the ability to incorporate [3H]leucine and [35S]methionine into protein in a reaction that required ADP and malate but was strongly inhibited by chloramphenicol. Organelles isolated after 4 days of germination incorporated leucine at rates ca 5-fold greater than shown by mitochondria of 16-hour-old seedlings. The inter-relationships between respiratory activity, mitochondrial formyltetrahydrofolates and methionyl-tRNA transformylase activity suggest a role for organelle protein synthesis during germination of these legume species.  相似文献   

18.
Respiration and net photosynthetic O2 production by cotton cotyledons were determined from an early age through the senescent stage. Various treatments were applied to cotyledons to assess the importance of current photosynthesis as compared to translocation of reserves to seedling development. Rates of respiration and net photosynthesis per cm2 were high on 1-day-old cotyledons, but the rates decreased sharply with rapid expansion to reach a fairly stable rate. Respiration per cotyledon decreased linearly with age until the onset of senescence, then exhibited a distinct climacteric rise followed by a sharp decrease. Net photosynthesis per cotyledon increased until expansion was completed and then decreased linearly and steeply with age. Excision of cotyledons, inhibition of photosynthesis either chemically or by covering, and removal of the terminal bud indicated that current photosynthesis is a potent force behind early epicotyl growth.  相似文献   

19.
萌发绿豆子叶自然衰老过程中可溶性蛋白质含量一直下降;从衰老开始到衰老前期,总游离氨基酸含量明显上升;但游离氨基酸各组分在子叶衰老期间的变化趋势并不相同。~3H-亮氨酸掺入蛋白质试验和多聚核糖体的相对量及其与总核糖体的比值(P/T)测定都证明在子叶衰老前期有蛋白质的新合成。子叶衰老期间。氨肽酶活性明显降低;而以酪蛋白为底物的蛋白水解酶活性却急剧上升,承担着催化蛋白质降解的主要功能。  相似文献   

20.
1. Mitochondria isolated from cultures of Acanthamoeba castellanii exhibit respiratory control and oxidize alpha-oxoglutarate, succinate and NADH with ADP:O ratios of about 2.4, 1.4 and 1.25 respectively. 2. Mitochondria from cultures of which the respiration was stimulated up to 50% by 1mm-cyanide (type-A mitochondria) and from cyanide-sensitive cultures (type-B mitochondria) had similar respiratory-control ratios and ADP:O ratios. 3. State-3 rates of respiration were generally more cyanide-sensitive than State-4 rates, and the respiration of type-A mitochondria was more cyanide-resistant than that of type-B mitochondria. 4. Salicylhydroxamic acid alone had little effect on respiratory activities of either type of mitochondria, but when added together with cyanide, irrespective of the order of addition, inhibition was almost complete. 5. Oxidation of externally added NADH by type-A mitochondria was mainly via an oxidase with a low affinity for oxygen (K(m)[unk]15mum), which was largely cyanide-sensitive and partially antimycin A-sensitive; this electron-transport pathway was inhibited by ADP. 6. Cyanide-insensitive but salicylhydroxamic acid-sensitive respiration was stimulated by AMP and ADP, and by ATP after incubation in the presence of MgCl(2). 7. Addition of rotenone to mitochondria oxidizing alpha-oxoglutarate lowered the ADP:O ratios by about one-third and rendered inhibition by cyanide more complete. 8. The results suggest that mitochondria of A. castellanii possess branched pathways of electron transport which terminate in three separate oxidases; the proportions of electron fluxes via these pathways vary at different stages of growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号