首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A recent examination of color vision in the ringtail lemur produced evidence that these prosimians could make color discriminations consistent with a diagnosis of trichromatic color vision. However, it was unclear if this behavior reflected the presence of three classes of cone or whether lemurs might be able to utilize signals from rods in conjunction with those from only two classes of cone. To resolve that issue, spectral sensitivity functions were obtained from ringtail lemurs (Lemur catta) and brown lemurs (Eulemur fulvus) using a noninvasive electrophysiological procedure, electroretinographic flicker photometry. Results from experiments involving chromatic adaptation indicate that these lemurs routinely have only a single class of cone photopigment in the middle to long wavelengths (peak sensitivity of about 545 nm); they also have a short-wavelengthsensitive cone pigment with peak of about 437 nm. The earlier behavioral results are suggested to have resulted from the ability of lemurs to jointly utilize signals from rods and cones. The cone pigment complements of these lemurs differ distinctly from those seen among the anthropoids. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Colour vision allows animals to reliably distinguish differences in the distributions of spectral energies reaching the eye. Although not universal, a capacity for colour vision is sufficiently widespread across the animal kingdom to provide prima facie evidence of its importance as a tool for analysing and interpreting the visual environment. The basic biological mechanisms on which vertebrate colour vision ultimately rests, the cone opsin genes and the photopigments they specify, are highly conserved. Within that constraint, however, the utilization of these basic elements varies in striking ways in that they appear, disappear and emerge in altered form during the course of evolution. These changes, along with other alterations in the visual system, have led to profound variations in the nature and salience of colour vision among the vertebrates. This article concerns the evolution of colour vision among the mammals, viewing that process in the context of relevant biological mechanisms, of variations in mammalian colour vision, and of the utility of colour vision.  相似文献   

4.
Among terrestrial animals, only vertebrates and arthropods possess wavelength-discrimination ability, so-called “color vision”. For color vision to exist, multiple opsins which encode visual pigments sensitive to different wavelengths of light are required. While the molecular evolution of opsins in vertebrates has been well investigated, that in arthropods remains to be elucidated. This is mainly due to poor information about the opsin genes of non-insect arthropods. To obtain an overview of the evolution of color vision in Arthropoda, we isolated three kinds of opsins, Rh1, Rh2, and Rh3, from two jumping spider species, Hasarius adansoni and Plexippus paykulli. These spiders belong to Chelicerata, one of the most distant groups from Hexapoda (insects), and have color vision as do insects. Phylogenetic analyses of jumping spider opsins revealed a birth and death process of color vision evolution in the arthropod lineage. Phylogenetic positions of jumping spider opsins revealed that at least three opsins had already existed before the Chelicerata-Pancrustacea split. In addition, sequence comparison between jumping spider Rh3 and the shorter wavelength-sensitive opsins of insects predicted that an opsin of the ancestral arthropod had the lysine residue responsible for UV sensitivity. These results strongly suggest that the ancestral arthropod had at least trichromatic vision with a UV pigment and two visible pigments. Thereafter, in each pancrustacean and chelicerate lineage, the opsin repertoire was reconstructed by gene losses, gene duplications, and function-altering amino acid substitutions, leading to evolution of color vision. Mitsumasa Koyanagi and Takashi Nagata contributed equally to this work. Sequence data from this article have been deposited with the DDBJ under accession nos. AB251846–AB251851.  相似文献   

5.
A recent focus in community ecology has been on how within‐species variability shapes interspecific niche partitioning. Primate color vision offers a rich system in which to explore this issue. Most neotropical primates exhibit intraspecific variation in color vision due to allelic variation at the middle‐to‐long‐wavelength opsin gene on the X chromosome. Studies of opsin polymorphisms have typically sampled primates from different sites, limiting the ability to relate this genetic diversity to niche partitioning. We surveyed genetic variation in color vision of five primate species, belonging to all three families of the primate infraorder Platyrrhini, found in the Yasuní Biosphere Reserve in Ecuador. The frugivorous spider monkeys and woolly monkeys (Ateles belzebuth and Lagothrix lagotricha poeppigii, family Atelidae) each had two opsin alleles, and more than 75% of individuals carried the longest‐wavelength (553–556 nm) allele. Among the other species, Saimiri sciureus macrodon (family Cebidae) and Pithecia aequatorialis (family Pitheciidae) had three alleles, while Plecturocebus discolor (family Pitheciidae) had four alleles—the largest number yet identified in a wild population of titi monkeys. For all three non‐atelid species, the middle‐wavelength (545 nm) allele was the most common. Overall, we identified genetic evidence of fourteen different visual phenotypes—seven types of dichromats and seven trichromats—among the five sympatric taxa. The differences we found suggest that interspecific competition among primates may influence intraspecific frequencies of opsin alleles. The diversity we describe invites detailed study of foraging behavior of different vision phenotypes to learn how they may contribute to niche partitioning.  相似文献   

6.
Molecular evolution of bat color vision genes   总被引:6,自引:0,他引:6  
The two suborders of bats, Megachiroptera (megabats) and Microchiroptera(microbats), use different sensory modalities for perceivingtheir environment. Megabats are crepuscular and rely on a well-developedeyes and visual pathway, whereas microbats occupy a nocturnalniche and use acoustic orientation or echolocation more thanvision as the major means of perceiving their environment. Inview of the differences associated with their sensory systems,we decided to investigate the function and evolution of colorvision (opsin genes) in these two suborders of bats. The middle/longwavelength (M/L) and short wavelength (S) opsin genes were sequencedfrom two frugivorous species of megabats, Haplonycteris fischeriand Pteropus dasymallus formosus, and one insectivorous speciesof microbat, Myotis velifer. Contrary to the situation in primates,where many nocturnal species have lost the functional S opsingene, both crepuscular and strictly nocturnal species of batsthat we examined have functional M/L and S opsin genes. Surprisingly,the S opsin in these bats may be sensitive to UV light, whichis relatively more abundant at dawn and at dusk. The M/L opsinin these bats appears to be the L type, which is sensitive tored and may be helpful for identifying fruits among leaves orfor other purposes. Most interestingly, H. fischeri has a recentduplication of the M/L opsin gene, representing to date theonly known case of opsin gene duplication in non-primate mammals.Some of these observations are unexpected and may provide insightsinto the effect of nocturnal life on the evolution of opsingenes in mammals and the evolution of the life history traitsof bats in general.  相似文献   

7.
Earlier studies yielded conflicting conclusions on the types of photoreceptors and photopigments found in the eyes of nocturnal prosimians. In this investigation a noninvasive electrophysiological procedure, electroretinogram flicker photometry, was employed to measure scotopic and photopic spectral sensitivity in the thick-tailed bushbaby (Otolemur crassicaudatus). The scotopic spectral sensitivity function of the bushbaby has a peak of about 507 nm. Under photopic test conditions, spectral sensitivity shifts toward the longer wavelengths. The results from a series of adaptation experiments indicate that the cones of the bushbaby retina contain only a single type of cone photopigment (peak sensitivity at about 545 nm). One implication from this result is that these animals do not have color vision. The photopigment arrangement of the bushbaby is different from that earlier found in diurnal and crepuscular prosimians but is similar to that of the owl monkey, the only nocturnal simian. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Several genera of platyrrhine monkeys show significant polymorphism of color vision. By contrast, catarrhine monkeys have usually been assumed to have uniform trichromatic color vision. However, the evidential basis for this assumption is quite limited. To study this issue further, spectral sensitivity functions were obtained from vervet monkeys (Cercopithecus aethiops sabaeus) using the technique of electroretinographic flicker photometry. Results from a chromatic adaptation experiment indicated that each of the twelve subjects had two classes of cone pigment in the 540/640 nm portion of the spectrum. That result strongly suggests that this species has routine trichromatic color vision. Comparison of the spectral sensitivity functions obtained from vervets and from similarly-tested humans further indicates that the cone complements of the two species are very similar. Results from this investigation add further support to the idea that there are fundamental differences in the genetic mechanisms underlying color vision in platyrrhine and catarrhine monkeys.  相似文献   

9.
Vision is a major sense for Primates and the ability to perceive colors has great importance for the species ecology and behavior. Visual processing begins with the activation of the visual opsins in the retina, and the spectral absorption peaks are highly variable among species. In most Primates, LWS/MWS opsins are responsible for sensitivity to long/middle wavelengths within the visible light spectrum, and SWS1 opsins provide sensitivity to short wavelengths, in the violet region of the spectrum. In this study, we aimed to investigate the genetic variation on the sws1 opsin gene of New World monkeys (NWM) and search for amino acid substitutions that might be associated with the different color vision phenotypes described for a few species. We sequenced the exon 1 of the sws1 opsin gene of seven species from the families Callitrichidae, Cebidae, and Atelidae, and searched for variation at the spectral tuning sites 46, 49, 52, 86, 90, 93, 114, 116, and 118. Among the known spectral tuning sites, only residue 114 was variable. To investigate whether other residues have a functional role in the SWS1 absorption peak, we performed computational modeling of wild-type SWS1 and mutants A50I and A50V, found naturally among the species investigated. Although in silico analysis did not show any visible effect caused by these substitutions, it is possible that interactions of residue 50 with other sites might have some effect in the spectral shifts in the order of ~14 nm, found among the NWM. We also performed phylogenetic reconstruction of the sws1 gene, which partially recovered the species phylogeny. Further studies will be important to uncover the mutations responsible for the phenotypic variability of the SWS1 of NWM, and how spectral tuning may be associated with specific ecological features such as preferred food items and habitat use.  相似文献   

10.
It has long been recognized that there are significant individual variations in color vision among humans. Recently, even more widespread individual variation in color vision has been found to occur in members of several genera of New World monkeys. This article addresses the question of whether a representative genus of Old World monkeys, Macaca, expresses individual variations in color vision. The principal approach was to compare behavioral measurements of increment-threshold spectral sensitivity for large samples of squirrel monkeys (Saimiri sp.) and macaque monkeys (Macaca mulatta, M. fascicularis). We conclude that, if they occur at all, individual variations in color vision among macaque monkeys must be rare.  相似文献   

11.
Most platyrrhines have a visual polymorphism that is characterized by the presence of multiple alleles of the M/LWS gene on the X chromosome. This polymorphism is probably maintained by selection. There are two possible mechanisms by which this can be explained: First, heterozygous females may have perceptual advantages over dichromats, such that trichromacy would be favored via the existence of different visual pigments. This is known as selection by heterosis. Second, dichromacy may be advantageous in some situations, with polymorphism being maintained by frequency-dependent selection. In this study the reflectance spectra of fruits and flowers eaten by a troop of squirrel monkeys (Saimiri sciureus) in Eastern Amazon were measured using a spectrophotometer. S. sciureus have an SWS cone with a spectral tuning of approximately 430 nm, and three M/LWS alleles with spectral tunings of 535 nm, 550 nm, and 562 nm. Based on the spectral tunings of the different phenotypes and the spectral data obtained from the food items, the responses of the different visual systems to the measured objects were modeled and then compared. The model predicted that trichromatic phenotypes would have an advantage over dichromats in detecting fruits and flowers from background foliage, which suggests that heterosis is the mechanism for maintaining polymorphism in S. sciureus. On the other hand, a large proportion of fruits could not be detected by any of the phenotypes. Additional studies are necessary to determine whether other important aspects of the primates' visual world, such as prey, predator, and conspecific detection, favor tri- or dichromacy.  相似文献   

12.
Recent research has identified polymorphic trichromacy in three diurnal strepsirrhines: Coquerel's sifaka (Propithecus coquereli), black and white ruffed lemurs (Varecia variegata), and red ruffed lemurs (V. rubra). Current hypotheses suggest that the transitions to diurnality experienced by Propithecus and Varecia were necessary precursors to their independent acquisitions of trichromacy. Accordingly, cathemeral lemurs are thought to lack the M/L opsin gene polymorphism necessary for trichromacy. In this study, the M/L opsin gene was sequenced in ten cathemeral blue-eyed black lemurs (Eulemur macaco flavifrons). This analysis identified a polymorphism identical to that of other trichromatic strepsirrhines at the critical amino acid position 285 in exon 5 of the M/L opsin gene. Thus, polymorphic trichromacy is likely present in at least one cathemeral Eulemur species, suggesting that strict diurnality is not necessary for trichromacy. The presence of trichromacy in E. m. flavifrons suggests that a re-evaluation of current hypotheses regarding the evolution of strepsirrhine trichromacy may be necessary. Although the M/L opsin polymorphism may have been independently acquired three times in the lemurid-indriid clade, the distribution of opsin alleles in lemurids and indriids may also be consistent with a common origin of trichromacy in the last common ancestor of either the lemurids or the lemurid-indriid clade.  相似文献   

13.
An advantage for trichromatic color vision in primates is shown by its presence in many lineages, but little attention has been paid to the potential disadvantages of trichromacy. Most New World monkey species are polymorphic for color vision, with both dichromats and trichromats present within a single population. We tested the foraging ability of trichromatic and dichromatic Geoffroy's marmosets (Callithrix geoffroyi) for colored cereal balls (Kix®) under conditions of red-green color camouflage (orange/green Kix® against an orange/green background) or lack of camouflage (Kix® same color as background) in a naturalized captive setting. In separate experiments designed to test foraging ability at long distances (<6 m) and short distances (<0.5 m), trichromats found significantly fewer Kix® under the camouflage condition than in the non-camouflage condition. In contrast, there is no difference in the ability of dichromats to detect color-camouflaged versus non-camouflaged Kix®. There is no significant difference between dichromats and trichromats for either camouflaged or non-camouflaged Kix®, though the power in the tests is low because of high individual variation. The results have clear implications for the foraging strategies of trichromatic marmosets. Differences in intensity of competition between trichromats and dichromats for items of food of different colors in relation to background may also have consequences for the foraging behavior of dichromats.  相似文献   

14.
Common displays such as CRT or LCD screens have hmlted capabilities in displaying most color spectra correctly. The main disadvantage of these devices is that they work with three primaries and the colors displayed are the mixture of these three colours. Consequently these devices can be confusing in testing human color identification, because the spectral distribution of the colors displayed is the combined spectrum of the three primaries. We have developed a new instrument for spectrally correct color vision measurement. This instrument uses light emitting diodes (LEDs) and is capable of producing all spectra of perceivable colors, thus with appropriate test methods this instrument can be a reliable and useful tool in testing human color vision and in verifying color vision correction.  相似文献   

15.
16.
The light-sensitive capacity of fish larvae is determined by the structure of the retina and the opsins expressed in the retinal and nonretinal photoreceptors. In this study, the retinal structure and expression of opsin genes during the early developmental stage of Takifugu rubripes larvae were investigated. Histological examination showed that at 1 days after hatching (dah), seven layers were observed in the retina of T. rubripes larva, including the pigment epithelial layer [retinal pigment epithelium layer (RPE)], photoreceptor layer (PRos/is), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL) and ganglion cell layer (GCL). At 2 dah, optic fibre layer (OFL) can be observed, and all eight layers were visible in the retina. By measuring the thickness of each layer, opposing developmental trends were found in the thickness of ONL, OPL, INL, IPL, GCL and OFL. The nuclear density of ONL, INL and GCL and the ratios of ONL/INL, ONL/GCL and INL/GCL were also measured and the ratio of ONL/GCL ranged from 1.9 at 2 dah to 3.4 at 8 dah and no significant difference was observed between the different developmental stages (P > 0.05). No significant difference was observed for the INL/GCL ratio between the different developmental stages, which ranged from 1.2 at 2 dah to 2.0 at 18 dah (P > 0.05). The results of quantitative real-time polymerase chain reaction (PCR) showed that the expression of RH1, LWS, RH2-1, RH2-2, SWS2, rod opsin, opsin3 and opsin5 could be detected from 1 dah. These results suggest that the well-developed retina and early expression of the opsins of T. rubripes during the period of transition from endogenous to mixed feeding might be critical for vision-based survival skills during the early life stages after hatching.  相似文献   

17.
The expression of cone opsin genes is a primary determinant of the characteristics of colour vision. Interspecific variation in opsin expression is common in African cichlids. It is correlated with foraging among cichlids from Lake Malawi, and with ambient light environment among cichlids from Lake Victoria. In this study, we tested whether gene expression varied within species such that it might be important in contributing to divergence. We hypothesized that light attenuation with depth would be correlated with predictable changes in gene expression in Lake Malawi, and that this variation would tune visual sensitivities to match the ambient light environment. We observed significant differences in cone opsin expression in three different comparisons among populations of the same species. Higher LWS expression was found in shallow versus deep Copadichromis eucinostomus. In Metriaclima zebra, individuals from Zimbawe Rock expressed significantly more SWS2B than those from Thumbi West Island, although these locales have similar ambient light environments. Finally, Tropheops gracilior from deeper water had significantly more variation in expression than their shallow counterparts. These results support that gene expression varies significantly between populations of the same species. Surprisingly, these results could not be explained by predicted visual performance as models predicted that differential expression patterns did not confer sensitivity advantages at different depths. This suggested that expression variation did not confer a local sensitivity advantage. Therefore, our findings were contrary to a primary requirement of the sensory bias hypothesis. As such, other explanations for intraspecific gene expression variation need to be tested.  相似文献   

18.
The taxonomy and nomenclature of New World monkeys is becoming precariously unstable and impractical, plagued by revisions aimed at conforming to approaches that reject the Biological Species Concept for narrowly construed reasons and resulting in a hyperinflated taxonomy at species (often) and genus (sometimes) levels. This undermines a major goal of classification at the most basic taxonomic levels to ease communication and facilitate research. Since it is difficult to justify extensive changes in terminology without a deeply justified theoretical purpose or without showing what scientific benefits these alterations can bring, working primatologists need not accept this doctrinaire trend. Knowing as little as we do about what a species actually is, does not justify contorting the value of a species nomenclature so that it reflects nothing more than coat color, a node, or endpoint of a dendrogram. Am. J. Primatol. 74:692‐695, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
作为昆虫种群的重要组成部分,夜行性昆虫成功进化出了与其生存环境相适应的感觉机制,普遍认为夜行性昆虫主要依靠嗅觉和机械性感受等来探索环境,其视觉器官发生了退化或功能丧失.近年来,随着红外夜视、视网膜电位(electroretinogram,ERG)和视觉神经等生物新技术的应用,昆虫视觉生态学研究出现了突破性进展,自200...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号