首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Francis CD  Ortega CP  Cruz A 《PloS one》2011,6(11):e27052

Background

Human-generated noise pollution now permeates natural habitats worldwide, presenting evolutionarily novel acoustic conditions unprecedented to most landscapes. These acoustics not only harm humans, but threaten wildlife, and especially birds, via changes to species densities, foraging behavior, reproductive success, and predator-prey interactions. Explanations for negative effects of noise on birds include disruption of acoustic communication through energetic masking, potentially forcing species that rely upon acoustic communication to abandon otherwise suitable areas. However, this hypothesis has not been adequately tested because confounding stimuli often co-vary with noise and are difficult to separate from noise exposure.

Methodology/Principal Findings

Using a natural experiment that controls for confounding stimuli, we evaluate whether species vocal features or urban-tolerance classifications explain their responses to noise measured through habitat use. Two data sets representing nesting and abundance responses reveal that noise filters bird communities nonrandomly. Signal duration and urban tolerance failed to explain species-specific responses, but birds with low-frequency signals that are more susceptible to masking from noise avoided noisy areas and birds with higher frequency vocalizations remained. Signal frequency was also negatively correlated with body mass, suggesting that larger birds may be more sensitive to noise due to the link between body size and vocal frequency.

Conclusions/Significance

Our findings suggest that acoustic masking by noise may be a strong selective force shaping the ecology of birds worldwide. Larger birds with lower frequency signals may be excluded from noisy areas, whereas smaller species persist via transmission of higher frequency signals. We discuss our findings as they relate to interspecific relationships among body size, vocal amplitude and frequency and suggest that they are immediately relevant to the global problem of increases in noise by providing critical insight as to which species traits influence tolerance of these novel acoustics.  相似文献   

5.
Liu P  Chen Z  Jones JA  Huang D  Liu H 《PloS one》2011,6(7):e22791

Background

Auditory feedback has been demonstrated to play an important role in the control of voice fundamental frequency (F0), but the mechanisms underlying the processing of auditory feedback remain poorly understood. It has been well documented that young adults can use auditory feedback to stabilize their voice F0 by making compensatory responses to perturbations they hear in their vocal pitch feedback. However, little is known about the effects of aging on the processing of audio-vocal feedback during vocalization.

Methodology/Principal Findings

In the present study, we recruited adults who were between 19 and 75 years of age and divided them into five age groups. Using a pitch-shift paradigm, the pitch of their vocal feedback was unexpectedly shifted ±50 or ±100 cents during sustained vocalization of the vowel sound/u/. Compensatory vocal F0 response magnitudes and latencies to pitch feedback perturbations were examined. A significant effect of age was found such that response magnitudes increased with increasing age until maximal values were reached for adults 51–60 years of age and then decreased for adults 61–75 years of age. Adults 51–60 years of age were also more sensitive to the direction and magnitude of the pitch feedback perturbations compared to younger adults.

Conclusion

These findings demonstrate that the pitch-shift reflex systematically changes across the adult lifespan. Understanding aging-related changes to the role of auditory feedback is critically important for our theoretical understanding of speech production and the clinical applications of that knowledge.  相似文献   

6.
While vocal learning has been studied extensively in birds and mammals, little effort has been made to define what exactly constitutes vocal learning and to classify the forms that it may take. We present such a theoretical framework for the study of social learning in vocal communication. We define different forms of social learning that affect communication and discuss the required methodology to show each one. We distinguish between contextual and production learning in animal communication. Contextual learning affects the behavioural context or serial position of a signal. It can affect both usage and comprehension. Production learning refers to instances where the signals themselves are modified in form as a result of experience with those of other individuals. Vocal learning is defined as production learning in the vocal domain. It can affect one or more of three systems: the respiratory, phonatory and filter systems. Each involves a different level of control over the sound production apparatus. We hypothesize that contextual learning and respiratory production learning preceded the evolution of phonatory and filter production learning. Each form of learning potentially increases the complexity of a communication system. We also found that unexpected genetic or environmental factors can have considerable effects on vocal behaviour in birds and mammals and are often more likely to cause changes or differences in vocalizations than investigators may assume. Finally, we discuss how production learning is used in innovation and invention, and present important future research questions. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

7.
8.
9.
The effect of the temporal structure of a vocal stimulus on the perception of the emotional component of the signal was studied in several age groups (7–10, 11–13, and 14–17 years). The experiments were performed at different durations of the stimulus (0.5, 1, 1.5, 2, and 3 s). ANOVA of the recognition efficiency and response time showed that the stimulus duration and the interactions of this factor with two others (stimulus duration × age and stimulus duration × emotion type) were highly significant for the recognition of emotions. The effects of the temporal structure of the signal on the recognition efficiency and response time were the strongest in the cases of neutral and negative emotional intonations and on going from the youngest to the middle age group. The minimal stimulus duration at which the threshold recognition of the emotion type occurred changed with age (from 2 s in the youngest age group to 0.5 s in the oldest). The capacity of the sensory acoustic memory was evaluated in children and adolescents of different ages.  相似文献   

10.
11.
12.
13.
Summary The ability of adultXenopus laevis to identify water wave frequencies was demonstrated by go/no-go conditioning. The acuity of frequency recognition is of absolute-pitch quality.Abbreviations S+ stimulus with response reward - S- stimulus with response punishment - u discrimination index  相似文献   

14.
15.
A novel form of auditory plasticity for enhanced detection of social signals was described in a teleost fish, Porichthys notatus (Batrachoididae, Porichthyinae). The seasonal onset of male calling coincides with inshore migration from deep waters by both sexes and increased female sensitivity to dominant frequencies of male calls. The closely related Lusitanian toadfish, Halobatrachus didactylus, (Batrachoididae, Halophryninae) also breeds seasonally and relies on acoustic communication to find mates but, instead, both sexes stay in estuaries and show vocal activity throughout the year. We investigated whether the sensitivity of the inner ear saccule of H. didactylus is seasonally plastic and sexually dimorphic. We recorded evoked potentials from populations of saccular hair cells from non-reproductive and reproductive males and females in response to 15–945 Hz tones. Saccular hair cells were most sensitive at 15–205 Hz (thresholds between 111 and 118 dB re. 1 μPa). Both sexes showed identical hearing sensitivity and no differences were found across seasons. The saccule was well suited to detect conspecific vocalizations and low frequencies that overlapped with lateral line sensitivity. We showed that the saccule in H. didactylus has major importance in acoustic communication throughout the year and that significant sensory differences may exist between the two batrachoidid subfamilies.  相似文献   

16.
17.
鸟类的鸣叫依赖于发育完善的鸣管并接受各级发声中枢组成的机能控制系统的调控,善鸣唱的鸟类前脑控制发声的神经核团发达.用石蜡切片法和生物信号采集处理系统对不同生长发育期的虎皮鹦鹉的发声控制神经核团的体积和声音进行了比较性研究.结果发现:(1)随着虎皮鹦鹉的成长,核团体积逐渐增大,核团轮廓逐渐清晰,而且雄鸟的核团明显大于雌鸟;(2)在鸟类成长的过程中,鸟的叫声越来越复杂,幅度越来越高,雄鸟的叫声比雌鸟更复杂,雌鸟的叫声比雄鸟的叫声幅度更高;(3)鸟类鸣叫的复杂程度和发声控制神经核团的体积呈相关性.  相似文献   

18.
An echocardiographic study of 190 subjects in the second period of adult age (108 women and 82 men) has been conducted. The absolute and relative sizes of the left ventricle (LV), left atrium (LA), right ventricle (RV), myocardium mass, and LV mass index were determined. Morphological changes in the heart detected by echocardiography (EchoCG) depended on the geometric configuration of the LV. The size of the RV was significantly increased in women with hypertrophy of the myocardium of the LV. All the EchoCG parameters with the exception of relative wall thickness (RWT) were gender-dependent. The gender-dependent differences in LV remodeling included higher values of LV mass index in men, different dynamics of the LV mass index (LVMI) in subjects with different geometric configurations of the LV, and more pronounced elevation of the index in women with eccentric hypertrophy of the LV (LV EG), in particular. The functional capacity of the heart was lower in men than in women.  相似文献   

19.
We describe a biopsy proven case of microsporidial infection of the false vocal cords in a 69-yr-old male with a history of chronic lymphocytic leukemia. The patient had hoarseness for several weeks before his admission to the hospital for shortness of breath. He had received chemotherapy with fludarabine 6 wk before this hospital admission. A biopsy of vocal cord nodules demonstrated an organism that was identified as Anncaliia algerae by electron microscopy. Molecular analysis of the small subunit RNA gene amplified by polymerase chain reaction further confirmed the identification of this organism as A. algerae. This case illustrates the ability of this insect pathogen to cause disease in immune-compromised mammalian hosts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号