首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Cultures of methane- or methanol-utilizing microbes, including obligate (both types I and II) and facultative methylotrophic bacteria, obligate methanol utilizers, and methanol-grown yeasts were isolated from lake water of Warinanco Park, Linden, N.J., and lake and soil samples of Bayway Refinery, Linden, N.J. Resting-cell suspensions of these, and of other known C1-utilizing microbes, oxidized secondary alcohols to their corresponding methyl ketones. The product methyl ketones accumulated extracellularly. Succinate-grown cells of facultative methylotrophs did not oxidize secondary alcohols. Among the secondary alcohols, 2-butanol was oxidized at the highest rate. The optimal conditions for in vivo methyl ketone formation were compared among five different types of C1-utilizing microbes. Some enzymatic degradation of 2-butanone was observed. The product, 2-butanone, did not inhibit the oxidation of 2-butanol. The rate of the 2-butanone production was linear for the first 4 h of incubation for all five cultures tested. A yeast culture had the highest production rate. The optimum temperature for the production of 2-butanone was 35°C for all the bacteria tested. The yeast culture had a higher temperature optimum (40°C), and there was a reasonably high 2-butanone production rate even at 45°C. Metal-chelating agents inhibit the production of 2-butanone, suggesting the involvement of metal(s) in the oxidation of secondary alcohols. Secondary alcohol dehydrogenase activity was found in the cell-free soluble extract of sonically disrupted cells. The cell-free system requires a cofactor, specifically nicotinamide adenine dinucleotide, for its activity. This is the first report of a nicotinamide adenine dinucleotide-dependent, secondary alcohol-specific enzyme.  相似文献   

2.
Nineteen new C(2) to C(4)n-alkane-grown cultures were isolated from lake water from Warinanco Park, Linden, N.J., and from lake and soil samples from Bayway Refinery, Linden, N.J. Fifteen known liquid alkane-utilizing cultures were also found to be able to grow on C(2) to C(4)n-alkanes. Cell suspensions of these C(2) to C(4)n-alkane-grown bacteria oxidized 2-alcohols (2-propanol, 2-butanol, 2-pentanol, and 2-hexanol) to their corresponding methyl ketones. The product methyl ketones accumulated extracellularly. Cells grown on 1-propanol or 2-propanol oxidized both primary and secondary alcohols. In addition, the activity for production of methyl ketones from secondary alcohols was found in cells grown on either alkanes, alcohols, or alkylamines, indicating that the enzyme(s) responsible for this reaction is constitutive. The optimum conditions for in vivo methyl ketone formation from secondary alcohols were compared among selected strains: Brevibacterium sp. strain CRL56, Nocardia paraffinica ATCC 21198, and Pseudomonas fluorescens NRRL B-1244. The rates for the oxidation of secondary alcohols were linear for the first 3 h of incubation. Among secondary alcohols, 2-propanol and 2-butanol were oxidized at the highest rate. A pH around 8.0 to 9.0 was found to be the optimum for acetone or 2-butanone formation from 2-alcohols. The temperature optimum for the production of acetone or 2-butanone from 2-propanol or 2-butanol was rather high at 60 degrees C, indicating that the enzyme involved in the reaction is relatively thermally stable. Metal-chelating agents inhibit the production of methyl ketones, suggesting the involvement of a metal(s) in the oxidation of secondary alcohols. Secondary alcohol dehydrogenase activity was found in the cell-free soluble fraction; this activity requires a cofactor, specifically NAD. Propane monooxygenase activity was also found in the cell-free soluble fraction. It is a nonspecific enzyme catalyzing both terminal and subterminal oxidation of n-alkanes.  相似文献   

3.
Nineteen new C2 to C4n-alkane-grown cultures were isolated from lake water from Warinanco Park, Linden, N.J., and from lake and soil samples from Bayway Refinery, Linden, N.J. Fifteen known liquid alkane-utilizing cultures were also found to be able to grow on C2 to C4n-alkanes. Cell suspensions of these C2 to C4n-alkane-grown bacteria oxidized 2-alcohols (2-propanol, 2-butanol, 2-pentanol, and 2-hexanol) to their corresponding methyl ketones. The product methyl ketones accumulated extracellularly. Cells grown on 1-propanol or 2-propanol oxidized both primary and secondary alcohols. In addition, the activity for production of methyl ketones from secondary alcohols was found in cells grown on either alkanes, alcohols, or alkylamines, indicating that the enzyme(s) responsible for this reaction is constitutive. The optimum conditions for in vivo methyl ketone formation from secondary alcohols were compared among selected strains: Brevibacterium sp. strain CRL56, Nocardia paraffinica ATCC 21198, and Pseudomonas fluorescens NRRL B-1244. The rates for the oxidation of secondary alcohols were linear for the first 3 h of incubation. Among secondary alcohols, 2-propanol and 2-butanol were oxidized at the highest rate. A pH around 8.0 to 9.0 was found to be the optimum for acetone or 2-butanone formation from 2-alcohols. The temperature optimum for the production of acetone or 2-butanone from 2-propanol or 2-butanol was rather high at 60°C, indicating that the enzyme involved in the reaction is relatively thermally stable. Metal-chelating agents inhibit the production of methyl ketones, suggesting the involvement of a metal(s) in the oxidation of secondary alcohols. Secondary alcohol dehydrogenase activity was found in the cell-free soluble fraction; this activity requires a cofactor, specifically NAD. Propane monooxygenase activity was also found in the cell-free soluble fraction. It is a nonspecific enzyme catalyzing both terminal and subterminal oxidation of n-alkanes.  相似文献   

4.
Cell suspensions of yeasts, Candida utilis ATCC 26387, Hansenula polymorpha ATCC 26012, Pichia sp. NRRL-Y-11328, Torulopsis sp. strain A1, and Kloeckera sp. strain A2, grown on various C-1 compounds (methanol, methylamine, methylformate), ethanol, and propylamine catalyzed the oxidation of secondary alcohols to the corresponding methyl ketones. Thus, isopropanol, 2-butanol, 2-pentanol, and 2-hexanol were converted to acetone, 2-butanone, 2-pentanone, and 2-hexanone, respectively. Cell-free extracts derived from methanol-grown yeasts catalyzed an oxidized nicotinamide adenine dinucleotide-dependent oxidation of secondary alcohols to the corresponding methyl ketones, Primary alcohols were not oxidized. The effect of various environmental factors on the production of methyl ketones from secondary alcohols by methanol-grown Pichia sp. was investigated.  相似文献   

5.
Oxidation of secondary alcohols to methyl ketones by yeasts.   总被引:4,自引:4,他引:0       下载免费PDF全文
Cell suspensions of yeasts, Candida utilis ATCC 26387, Hansenula polymorpha ATCC 26012, Pichia sp. NRRL-Y-11328, Torulopsis sp. strain A1, and Kloeckera sp. strain A2, grown on various C-1 compounds (methanol, methylamine, methylformate), ethanol, and propylamine catalyzed the oxidation of secondary alcohols to the corresponding methyl ketones. Thus, isopropanol, 2-butanol, 2-pentanol, and 2-hexanol were converted to acetone, 2-butanone, 2-pentanone, and 2-hexanone, respectively. Cell-free extracts derived from methanol-grown yeasts catalyzed an oxidized nicotinamide adenine dinucleotide-dependent oxidation of secondary alcohols to the corresponding methyl ketones, Primary alcohols were not oxidized. The effect of various environmental factors on the production of methyl ketones from secondary alcohols by methanol-grown Pichia sp. was investigated.  相似文献   

6.
Cell-free extracts derived from yeasts Candida utilis ATCC 26387, Hansenula polymorpha ATCC 26012, Pichia sp. NRRL-Y-11328 Torulopsis sp. strain A1 and Kloeckera sp. strain A2 catalyzed an NAD+-dependent oxidation of secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 2-hexanol) to the corresponding methyl ketones (acetone, 2-butanone, 2-pentanone, 2-hexanone). We have purified a NAD+-specific secondary alcohol dehydrogenase from methanol-grown yeast, Pichia sp. The purified enzyme is homogenous as judged by polyacrylamide gel electrophoresis. The purified enzyme catalyzed the oxidation of secondary alcohols to the corresponding methyl ketones in the presence of NAD+ as an electron acceptor. Primary alcohols were not oxidized by the purified enzyme. The optimum pH for oxidation of secondary alcohols by the purified enzyme is 8.0. The molecular weight of the purified enzyme as determined by gel filtration is 98 000 and subunit size as determined by sodium dodecyl sulfate gel electrophoresis is 48 000. The activity of the purified secondary alcohol dehydrogenase was inhibited by sulfhydryl inhibitors and metal-binding agents.  相似文献   

7.
Over 20 new strains of methane-utilizing bacteria were isolated from lake water and soil samples. Cell suspensions of these and of other known strains of methane-utilizing bacteria oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 2-hexanol). The product secondary alcohols accumulated extracellularly. The rate of production of secondary alcohols varied with the organism used for oxidation. The average rate of 2-propanol, 2-butanol, 2-pentanol, and 2-hexanol production was 1.5, 1.0, 0.15, and 0.08 μmol/h per 5.0 mg of protein in cell suspensions, respectively. Secondary alcohols were slowly oxidized further to the corresponding methylketones. Primary alcohols and aldehydes were also detected in low amounts (rate of production were 0.05 to 0.08 μmol/h per 5.0 mg of protein in cell suspensions) as products of n-alkane (propane and butane) oxidation. However, primary alcohols and aldehydes were rapidly metabolized further by cell suspensions. Methanol-grown cells of methane-utilizing bacteria did not oxidize n-alkanes to their corresponding secondary alcohols, indicating that the enzymatic system required for oxidation of n-alkanes was induced only during growth on methane. The optimal conditions for in vivo secondary alcohol formation from n-alkanes were investigated in Methylosinus sp. (CRL-15). The rate of 2-propanol and 2-butanol production was linear for the 40-min incubation period and increased directly with cell protein concentration up to 12 mg/ml. The optimal temperature and pH for the production of 2-propanol and 2-butanol were 40°C and pH 7.0. Metalchelating agents inhibited the production of secondary alcohols. The activities for the hydroxylation of n-alkanes in various methylotrophic bacteria were localized in the cell-free particulate fractions precipitated by centrifugation between 10,000 and 40,000 × g. Both oxygen and reduced nicotinamide adenine dinucleotide were required for hydroxylation activity. The metal-chelating agents inhibited hydroxylation of n-alkanes by the particulate fraction, indicating the involvement of a metal-containing enzyme system in the oxidation of n-alkanes. The production of 2-propanol from the corresponding n-alkane by the particulate fraction was inhibited in the presence of methane, suggesting that the subterminal hydroxylation of n-alkanes may be catalyzed by methane monooxygenase.  相似文献   

8.
The isolation and characterization of a new methanogen from a peat bog, Methanobacterium palustre spec. nov., strain F, is described. Strain F grew on H2/CO2 and formate in complex medium. It also grew autotrophically on H2/CO2. Furthermore, growth on 2-propanol/CO2 was observed. Methane was formed from CO2 by oxidation of 2-propanol to acetone or 2-butanol to 2-butanone, but growth on 2-butanol plus CO2 apparently was too little to be measurable. Similarly, Methanobacterium bryantii M. o. H. and M. o. H. G formed acetone and 2-butanone from 2-propanol and 2-butanol, but no growth was measurable.On the basis of morphological and biochemical features strain F could be excluded from the genus Methanobrevibacter. Due to its cell morphology, lipid composition and polyamine pattern it belonged to the genus Methanobacterium. From known members of this genus strain F could be distinguished either by a different G+C content of the DNA, low DNA-DNA homology with reference strains, lacking serological reactions with anti-S probes and differences in the substrate spectrum.An alcohol dehydrogenase activity, specific for secondary alcohols and its substrate specificity was determined in crude extracts of strain F. NADP+ was the only electron carrier that was utilized. No reaction was found with NAD+, F420, FMN and FAD.Abbreviations NAD+ nicotinamide adenine dinucleotide - NADH2 reduced form of NAD+ - NADP+ nicotinamide adenine dinucleotide phosphate - NADPH2 reduced form of NADP+ - FMN flavin adenine mononucleotide - FAD flavin adenine dinucleotide - ADH alcohol dehydrogenase - F420 8-hydroxy-7,8-didemethyl-5-deazaflavin - SSC standard saline citrate (0.15 M NaCl, 0.015 M trisodium citrate, pH 7.5)  相似文献   

9.
Cell suspensions of methane-utilizing bacteria grown on methane oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding methylketones (acetone, 2-butanone, 2-pentanone, 2-hexanone). The product methylketones accumulated extracellularly. The rate of production of methylketones varied with the organism used for oxidation; however, the average rate of acetone, 2-butanone, 2-pentanone, and 2-hexanone production was 1.2, 1.0, 0.15, and 0.025 μmol/h per 5.0 mg of protein in cell suspensions. Primary alcohols and aldehydes were also detected in low amounts as products of n-alkane (propane and butane) oxidation, but were rapidly metabolized further by cell suspensions. The optimal conditions for in vivo methylketone formation from n-alkanes were compared in Methylococcus capsulatus (Texas strain), Methylosinus sp. (CRL-15), and Methylobacterium sp. (CRL-26). The rate of acetone and 2-butanone production was linear for the first 60 min of incubation and directly increased with cell concentration up to 10 mg of protein per ml for all three cultures tested. The optimal temperatures for the production of acetone and 2-butanone were 35°C for Methylosinus trichosporium sp. (CRL-15) and Methylobacterium sp. (CRL-26) and 40°C for Methylcoccus capsulatus (Texas). Metal-chelating agents inhibited the production of methylketones, suggesting the involvement of a metal-containing enzymatic system in the oxidation of n-alkanes to the corresponding methylketones. The soluble crude extracts derived from methane-utilizing bacteria contained an oxidized nicotinamide adenine dinucleotide-dependent dehydrogenase which catalyzed the oxidation of secondary alcohols.  相似文献   

10.
NAD-linked alcohol dehydrogenase activity was detected in cell-free crude extracts from various propane-grown bacteria. Two NAD-linked alcohol dehydrogenases, one which preferred primary alcohols (alcohol dehydrogenase I) and another which preferred secondary alcohols (alcohol dehydrogenase II), were found in propane-grown Pseudomonas fluorescens NRRL B-1244 and were separated from each other by DEAE-cellulose column chromatography. The properties of alcohol dehydrogenase I resembled those of well-known primary alcohol dehydrogenases. Alcohol dehydrogenase II was purified 46-fold; it was homogeneous as judged by acrylamide gel electrophoresis. The molecular weight of this secondary alcohol dehydrogenase is 144,500; it consisted of four subunits per molecule of enzyme protein. It oxidized secondary alcohols, notably, 2-propanol, 2-butanol, and 2-pentanol. Primary alcohols and diols were also oxidized, but at a lower rate. Alcohols with more than six carbon atoms were not oxidized. The pH and temperature optima for secondary alcohol dehydrogenase activity were 8 to 9 and 60 to 70 degrees C, respectively. The activation energy calculated from an Arrhenius plot was 8.2 kcal (ca. 34 kJ). The Km values at 25 degrees C, pH 7.0, were 8.2 X 10(-6) M for NAD and 8.5 X 10(-5) M for 2-propanol. The secondary alcohol dehydrogenase activity was inhibited by strong thiol reagents and strong metal-chelating agents such as 4-hydroxymercuribenzoate, 5,5'-dithiobis(2-nitrobenzoic acid), 5-nitro-8-hydroxyquinoline, and 1,10-phenanthroline. The enzyme oxidized the stereoisomers of 2-butanol at an equal rate. Alcohol dehydrogenase II had good thermal stability and the ability to catalyze reactions at high temperature (85 degrees C). It appears to have properties distinct from those of previously described primary and secondary alcohol dehydrogenases.  相似文献   

11.
NAD-linked alcohol dehydrogenase activity was detected in cell-free crude extracts from various propane-grown bacteria. Two NAD-linked alcohol dehydrogenases, one which preferred primary alcohols (alcohol dehydrogenase I) and another which preferred secondary alcohols (alcohol dehydrogenase II), were found in propane-grown Pseudomonas fluorescens NRRL B-1244 and were separated from each other by DEAE-cellulose column chromatography. The properties of alcohol dehydrogenase I resembled those of well-known primary alcohol dehydrogenases. Alcohol dehydrogenase II was purified 46-fold; it was homogeneous as judged by acrylamide gel electrophoresis. The molecular weight of this secondary alcohol dehydrogenase is 144,500; it consisted of four subunits per molecule of enzyme protein. It oxidized secondary alcohols, notably, 2-propanol, 2-butanol, and 2-pentanol. Primary alcohols and diols were also oxidized, but at a lower rate. Alcohols with more than six carbon atoms were not oxidized. The pH and temperature optima for secondary alcohol dehydrogenase activity were 8 to 9 and 60 to 70 degrees C, respectively. The activation energy calculated from an Arrhenius plot was 8.2 kcal (ca. 34 kJ). The Km values at 25 degrees C, pH 7.0, were 8.2 X 10(-6) M for NAD and 8.5 X 10(-5) M for 2-propanol. The secondary alcohol dehydrogenase activity was inhibited by strong thiol reagents and strong metal-chelating agents such as 4-hydroxymercuribenzoate, 5,5'-dithiobis(2-nitrobenzoic acid), 5-nitro-8-hydroxyquinoline, and 1,10-phenanthroline. The enzyme oxidized the stereoisomers of 2-butanol at an equal rate. Alcohol dehydrogenase II had good thermal stability and the ability to catalyze reactions at high temperature (85 degrees C). It appears to have properties distinct from those of previously described primary and secondary alcohol dehydrogenases.  相似文献   

12.
The obligate photoautotrophic cyanobacterium Synechococcus PCC7942 and the photoheterotrophic heterocystous cyanobacterium Noctoc muscorum are able to reduce prochiral ketones asymmetrically to optical pure chiral alcohols without light. An example is the synthesis of S-pentafluoro(phenyl-)ethanol with an enantiomeric excess >99% if 2′-3′-4′-5′-6′-pentafluoroacetophenone is used as substrate. If no light is available for regeneration of the cofactor nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH), glucose is used as cosubstrate. Membrane disintegration during asymmetric reduction promotes cytosolic energy generating metabolic pathways. Observed regulatory effects depicted by an adenosine triphosphate (ATP) to nicotinamide adenine dinucleotide phosphate (oxidized form) (NADP+) ratio of 3:1 for efficient cofactor recycling indicate a metabolization via glycolisis. The stoichiometric formation of the by-product acetate (1 mol acetate/1 mol chiral alcohol) indicates homoacetic acid fermentation for cofactor regeneration including the obligate photoautotrophic cyanobacterium Synechococcus PCC7942.  相似文献   

13.
Alcohol-oxidizing enzymes of the facultative methylotroph PAR were investigated after growth of the bacteria on methanol and ethanol. During methanol growth only a phenazine methosulfate-linked alcohol dehydrogenase was detected. This enzyme had broad specificity for primary alcohols and was also capable of oxidation of secondary alcohols. It had a molecular weight of 112,000, was composed of two subunits of equal molecular weight, and showed an absolute requirement for ammonium ion for activation. During ethanol growth this enzyme was absent and was replaced by a typical nicotinamide adenine dinucleotide-linked alcohol dehydrogenase of molecular weight 150,000. The latter enzyme also had broad specificity but could not oxidize methanol. This enzyme was not found during methanol growth. These data show that the organism has two distinctly separate mechanisms for oxidation of alcohols.  相似文献   

14.
Pseudomonas C12B grew on and oxidized linear primary alcohols with even- and odd-numbered carbon chains ranging from C(2) to C(11). Cell-free extracts of the bacteria contained a nicotinamide adenine dinucleotide-linked dehydrogenase(s) active with these alcohols and with branched primary and linear secondary alcohols as well. Analysis by gas-liquid chromatography of hexane extracts of filtrates of cultures containing mixtures of even-carbon numbered alcohols from C(10) to C(18) revealed that decanol was rapidly utilized, whereas the remainder were slowly dissimilated up to 19 hr and then were rapidly degraded in the next few hours of culture. The validity for these studies of (i) steam distillation as a method for collecting the alcohols from cultures, and (ii) quantitative estimation by gas-liquid chromatographic comparison with an added internal marker, was established. Steam distillation and gas-liquid chromatography were then used to show that failure to demonstrate stoichiometry of sulfate and dodecanol in the alkyl sulfatase reaction in a previous study resulted from contamination of the commercial "Dodecyl Sodium Sulfate, 95%" used with decyl, undecyl, and tetradecyl sulfates.  相似文献   

15.
Laboratory-reared males of the cactophilic Drosophila pachea exhibit a spontaneous and sex-specific suppression of alcohol dehydrogenase (ADH) activity within 4 days after eclosion. A lack of ADH activity also is usually seen in wild-caught males, although relatively high activity is always seen in female flies. In the present study we examined the effectiveness of different alcohols and related compounds, including several found naturally in necroses of the host cactus, to induce suppressed ADH activity in wild males of D. pachea and to serve as enzyme substrates. The primary alcohols (methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol), and the secondary alcohols (2-propanol and 2-butanol), each induced activity after 24 h exposure, although to different degrees. 1,2-Propanediol was usually effective as an inducer, but 2,3-butanediol usually was ineffective. Little or no induction was seen with 1-octanol, 2-pentanol, 3-methyl-1-butanol, 3-hydroxy-2-butanone, or acetaldehyde. Although the compounds tested varied in their ability to function as ADH substrates, methanol was the only alcohol that showed no activity staining. Ethanol induction of ADH activity was apparent after 3-6 h exposure and induced activity decreased dramatically within 1 week of flies being placed in an alcohol-free environment. Ethanol exposure did not induce ADH in adult female D. pachea, or in adult males and females of D. acutilabella in which control males show reduced ADH activity compared to females. The implications of the loss of ADH activity in adult males of D. pachea, as they relate to feeding ecology and fitness, are discussed.  相似文献   

16.
The influence of a H(2)-utilizing organism, Vibrio succinogenes, on the fermentation of limiting amounts of glucose by a carbohydrate-fermenting, H(2)-producing organism, Ruminococcus albus, was studied in continuous cultures. Growth of V. succinogenes depended on the production of H(2) from glucose by R. albus. V. succinogenes used the H(2) produced by R. albus to obtain energy for growth by reducing fumarate in the medium. Fumarate was not metabolized by R. albus alone. The only products detected in continuous cultures of R. albus alone were acetate, ethanol, and H(2). CO(2) was not measured. The only products detected in the mixed cultures were acetate and succinate. No free H(2) was produced. No formate or any other volatile fatty acid, no succinate or other dicarboxylic acids, lactate, alcohols other than ethanol, pyruvate, or other keto-acids, acetoin, or diacetyl were detected in cultures of R. albus alone or in mixed cultures. The moles of product per 100 mol of glucose fermented were approximately 69 for ethanol, 74 for acetate, 237 for H(2) for R. albus alone and 147 for acetate and 384 for succinate for the mixed culture. Each mole of succinate is equivalent to the production of 1 mol of H(2) by R. albus. Thus, in the mixed cultures, ethanol production by R. albus is eliminated with a corresponding increase in acetate and H(2) formation. The mixed-culture pattern is consistent with the hypothesis that nicotinamide adenine dinucleotide (reduced form), formed during glycolysis by R. albus, is reoxidized during ethanol formation when R. albus is grown alone and is reoxidized by conversion to nicotinamide adenine dinucleotide and H(2) when R. albus is grown with V. succinogenes. The ecological significance of this interspecies transfer of H(2) gas and the theoretical basis for its causing changes in fermentation patterns of R. albus are discussed.  相似文献   

17.
《Phytochemistry》1987,26(5):1417-1420
Isolates of Aspergillus ruber and A. repens have been grown on coconut oil as the sole carbon source in shake culture. Methyl ketones (C5-C13) were isolated by solvent extraction and analysed by combined gas chromatography and mass spectrometry. 2-Undecanone was the main volatile product reflecting the high concentration of dodecanoic acid in the original coconut oil. The reactivity of the individual short chain fatty acids as substrates for production of methyl ketones would appear to decrease with increasing molecular weight of the acid after taking into account the greater volatility of the lower molecular weight homologues. 2-Hexanone and 2-octanone were produced by all isolates in low concentration (< 1%). Nonanoic acid and 2-heptanone were converted into 2-octanone. Low concentrations of secondary alcohols were formed under aerobic conditions. It is suggested that the production of methyl ketones by partial β-oxidation is too closely related to mainstream metabolism to be of use in the biochemical taxonomy of the genus.  相似文献   

18.
Biochemical Basis of Obligate Autotrophy in Nitrosomonas europaea   总被引:6,自引:4,他引:2       下载免费PDF全文
The specific activities of isocitric dehydrogenase, alpha-ketoglutaric dehydrogenase, succinic dehydrogenase, malic dehydrogenase, and reduced nicotinamide adenine dinucleotide (NADH) oxidase were determined in extracts of Nitrosomonas europaea and compared with the corresponding values for Anacystis nidulans and autotrophically grown Hydrogenomonas eutropha. In common with other obligate autotrophs and in contrast to facultative autotrophs, Nitrosomonas extracts lacked alpha-ketoglutaric dehydrogenase and KCN-sensitive NADH oxidase activity and had low succinic dehydrogenase activity. The Nitrosomonas NADH oxidase appeared to be of the peroxidase type.  相似文献   

19.
A new, acyclic NAD-analog, acycloNAD+ has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD+ with a redox potential of −324 mV and a 341 nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD+ by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD+. The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon–hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD+. In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD+ by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD+ has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases.  相似文献   

20.
Volatile compounds produced by 31 strains of pseudomonads and by reference strains of Pseudomonas fragi and Ps. fluorescens biotype 1 during growth on beef stored at 6 degrees C in air were analysed by gas chromatography-mass spectrometry of headspace gases. Compounds of major sensory significance were ethyl and methyl esters of C2-C8 fatty acids and sulphur-containing compounds which included methane- and isopropanethiols and their related sulphides and thioesters but not hydrogen sulphide. Ester production was mainly associated with growth of some, but not all, Ps. fragi and related meat strains but sulphur-containing compounds were produced by all but a single meat strain. A minority of other meat strains produced greater amounts of methyl ketones, secondary alcohols and unsaturated hydrocarbons believed to be of lipid origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号