首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A rapid, sensitive and specific high-performance liquid chromatographic method for the quantification of acrolein (1), one of the toxic metabolites of oxazaphosphorine alkylating agents (cyclophosphamide and ifosfamide) was developed. Condensation of acrolein with Luminarin® 3 afforded a fluorescent derivative that could be specifically detected and quantified. Chromatographic conditions involved a C18 RP column Uptisphere and a gradient elution system to optimize resolution and time analysis. The method showed high sensitivity with a limit of detection of 100 pmol/ml and a limit of quantification of 300 pmol/ml. This technique is particularly suitable for pharmacokinetic studies on plasma of oxazaphosphorine-receiving patients.  相似文献   

2.
This study evaluated the role of oxidative stress in acrolein-induced DNA damage, using HepG2 cells. Using the standard single cell gel electrophoresis (SCGE) assay, a significant dose-dependent increment in DNA migration was detected at lower concentrations of acrolein; but at the higher tested concentrations, a reduction in the migration was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of acrolein. These results indicated that acrolein caused DNA strand breaks and DNA-protein crosslinks (DPC). To elucidate the oxidatively generated DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were used to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that acrolein induced the increased levels of ROS and depletion of GSH in HepG2 cells. Moreover, acrolein significantly caused 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) formation in HepG2 cells. These results demonstrate that the DNA damage induced by acrolein in HepG2 cells is related to the oxidative stress.  相似文献   

3.
This study evaluated the role of oxidative stress in acrolein-induced DNA damage, using HepG2 cells. Using the standard single cell gel electrophoresis (SCGE) assay, a significant dose-dependent increment in DNA migration was detected at lower concentrations of acrolein; but at the higher tested concentrations, a reduction in the migration was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of acrolein. These results indicated that acrolein caused DNA strand breaks and DNA-protein crosslinks (DPC). To elucidate the oxidatively generated DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were used to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that acrolein induced the increased levels of ROS and depletion of GSH in HepG2 cells. Moreover, acrolein significantly caused 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) formation in HepG2 cells. These results demonstrate that the DNA damage induced by acrolein in HepG2 cells is related to the oxidative stress.  相似文献   

4.
The electrochemical oxidation of anticancer drugs ifosfamide and cyclophosphamide produced in high yield methoxylated analogues of the key hydroxy-metabolites of these oxazaphosphorine prodrugs. The cytotoxicity of these compounds was evaluated, and found to be as high as the hydroxy-metabolite.  相似文献   

5.
Acrolein is an environmental toxicant, mainly found in smoke released from incomplete combustion of organic matter. Several studies showed that exposure to acrolein can lead to liver damage. The mechanisms involved in acrolein-induced hepatocellular toxicity, however, are not completely understood. This study examined the cytotoxic mechanisms of acrolein on HepG2 cells. Acrolein at pathophysiological concentrations was shown to cause apoptotic cell death and an increase in levels of protein carbonyl and thiobarbituric acid reactive acid substances. Acrolein also rapidly depleted intracellular glutathione (GSH), GSH-linked glutathione-S-transferases, and aldose reductase, three critical cellular defenses that detoxify reactive aldehydes. Results further showed that depletion of cellular GSH by acrolein preceded the loss of cell viability. To further determine the role of cellular GSH in acrolein-mediated cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. It was observed that depletion of cellular GSH by BSO led to a marked potentiation of acrolein-mediated cytotoxicity in HepG2 cells. To further assess the contribution of these events to acrolein-induced cytotoxicity, triterpenoid compound 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) was used for induction of GSH. Induction of GSH by CDDO-Im afforded cytoprotection against acrolein toxicity in HepG2 cells. Furthermore, BSO significantly inhibited CDDO-Im-mediated induction in cellular GSH levels and also reversed cytoprotective effects of CDDO-Im in HepG2 cells. These results suggest that GSH is a predominant mechanism underlying acrolein-induced cytotoxicity as well as CDDO-Im-mediated cytoprotection. This study may provide understanding on the molecular action of acrolein which may be important to develop novel strategies for the prevention of acrolein-mediated toxicity.  相似文献   

6.
Lips J  Kaina B 《Mutation research》2001,487(1-2):59-66
Methylation at the O(6)-position of guanine (O(6)-MeG) by alkylating agents is efficiently removed by O(6)-methylguanine-DNA methyltransferase (MGMT), preventing from cytotoxic, mutagenic, clastogenic and carcinogenic effects of O(6)-MeG-inducing agents. If O(6)-MeG is not removed from DNA prior to replication, thymine will be incorporated instead of cytosine opposite the O(6)-MeG lesion. This mismatch is recognized and processed by mismatch repair (MMR) proteins which are known to be involved in triggering the cytotoxic and genotoxic response of cells upon methylation. In this work we addressed three open questions. (1) Is MGMT able to repair O(6)-MeG mispaired with thymine (O(6)-MeG/T)? (2) Do MMR proteins interfere with the repair of O(6)-MeG/T by MGMT? (3) Does MGMT show a protective effect if it is expressed after replication of DNA containing O(6)-MeG? Using an in vitro assay we show that oligonucleotides containing O(6)-MeG/T mismatches are as efficient as oligonucleotides containing O(6)-MeG/C in competing for MGMT repair activity, indicating that O(6)-MeG mispaired with thymine is still subject to repair by MGMT. The addition of MMR proteins from nuclear extracts, or of recombinant MutSalpha, to the in vitro repair assay did not affect the repair of O(6)-MeG/T lesions by MGMT. This indicates that the presence of MutSalpha still allows access of MGMT to O(6)-MeG/T lesions. To elucidate the protective effect of MGMT in the first and second replication cycle after N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment, MGMT transfected CHO cells were synchronized and MGMT was inactivated by pulse-treatment with O(6)-benzylguanine (O(6)-BG). Thereafter, the recovered cells were treated with MNNG and subjected to clonogenic survival assays. Cells which expressed MGMT in the first and second cell cycle were more resistant than cells which expressed MGMT only in the second (post-treatment) cell cycle. Cells which did not express MGMT in both cell cycles were most sensitive. This indicates that repair of O(6)-MeG can occur both in the first and second cell cycle after alkylation protecting cells from the killing effect of the lesion.  相似文献   

7.
Mitochondrial DNA (mtDNA) mutations are implicated in pathogenesis of human diseases including cancer. To prevent mutations cells have developed repair systems to counteract harmful genetic changes caused by DNA damaging agents. One such DNA repair protein is the O(6)-Methylguanine-DNA methyltransferase (MGMT) that prevents certain types of alkylation damage. Yet, the role of MGMT in preventing alkylation induced DNA damage in mtDNA is unclear. We explored the idea of increasing cell survival after alkylation damage by overexpressing MGMT in mitochondria. We show that overexpression of this repair protein in mitochondria increases cell survival after treatment with the DNA damaging agent MNNG.  相似文献   

8.
Temozolomide (TMZ) is a methylating agent which prolongs survival when administered during and after radiotherapy in the first-line treatment of glioblastoma and which also has significant activity in recurrent disease. O6-methylguanine DNA methyltransferase (MGMT) is a DNA repair enzyme attributed a role in cancer cell resistance to O6-alkylating agent-based chemotherapy. Using a panel of 12 human glioma cell lines, we here defined the sensitivity to TMZ in acute cytotoxicity and clonogenic survival assays in relation to MGMT, mismatch repair and p53 status and its modulation by dexamethasone, irradiation and BCL-X(L). We found that the levels of MGMT expression were a major predictor of TMZ sensitivity in human glioma cells. MGMT activity and clonogenic survival after TMZ exposure are highly correlated (p < 0.0001, r2 = 0.92). In contrast, clonogenic survival after TMZ exposure does not correlate with the expression levels of the mismatch repair proteins mutS homologue 2, mutS homologue 6 or post-meiotic segregation increased 2. The MGMT inhibitor O6-benzylguanine sensitizes MGMT-positive glioma cells to TMZ whereas MGMT gene transfer into MGMT-negative cells confers protection. The antiapoptotic BCL-X(L) protein attenuates TMZ cytotoxicity in MGMT-negative LNT-229 but not in MGMT-positive LN-18 cells. Neither ionizing radiation (4 Gy) nor clinically relevant concentrations of dexamethasone modulate MGMT activity or TMZ sensitivity. Abrogation of p53 wild-type function strongly attenuates TMZ cytotoxicity. Conversely, p53 mimetic agents designed to stabilize the wild-type conformation of p53 sensitize glioma cells for TMZ cytotoxicity. Collectively, these results suggest that the determination of MGMT expression and p53 status will help to identify glioma patients who will or will not respond to TMZ.  相似文献   

9.
Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5–30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5–10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells.  相似文献   

10.
Activated cyclophosphamide (CP) is known to achieve its cytotoxic and alkylating capacity upon spontaneous hydrolytic breakdown of the oxazaphosphorine ring structure. Treatment of yeast cells with the chemically activated form of CP (4-hydroperoxy-CP, 4-OOH-CP) and with several potentially toxic cleavage products revealed that cytotoxicity is closely linked to the formation of DNA interstrand cross-links and to DNA fragmentation. While this holds true for 4-OOH-CP and its bifunctional alkylating breakdown products, phosphoramide mustard (PM) and nor-nitrogen mustard (NNM), equimolar concentrations of acrolein and the monofunctional analogon of activated CP were inactive. NNM, the ultimate cleavage product within the successive degradation of the oxazaphosphorine structure was five times more toxic than 4-OOH-CP, whereas the cytotoxic action of PM was only slightly enhanced. The high cytotoxicity of NNM was matched by its ability to induce DNA interstrand cross-links: at concentrations and treatment times producing equal cell killing, 4-OOH-CP and NNM produced the same extent of cross-linking and DNA fragmentation. Biochemical potency of NNM is in contrast to data found with the NBP colorimetric assay which suggest that NNM loses its alkylating activity at neutral pH. 4-OOH-CP and PM are much more stable than predicted from half-life measurements performed via the NBP colorimetric assay: they retain a considerable fraction of their cytotoxic and cross-linking activity in spite of a 12-h preincubation at pH 7 and 36°C.  相似文献   

11.
Oxidative stress has been implicated in acrolein cytotoxicity in various cell types, including mammalian spinal cord tissue. In this study we report that acrolein also decreases PC12 cell viability in a reactive oxygen species (ROS)-dependent manner. Specifically, acrolein-induced cell death, mainly necrosis, is accompanied by the accumulation of cellular ROS. Elevating ROS scavengers can alleviate acrolein-induced cell death. Furthermore, we show that exposure to acrolein leads to mitochondrial dysfunction, denoted by the loss of mitochondrial transmembrane potential, reduction of cellular oxygen consumption, and decrease of ATP level. This raises the possibility that the cellular accumulation of ROS could result from the increased production of ROS in the mitochondria of PC12 cells as a result of exposure to acrolein. The acrolein-induced significant decrease of ATP production in mitochondria may also explain why necrosis, not apoptosis, is the dominant type of cell death. In conclusion, our data suggest that one possible mechanism of acrolein-induced cell death could be through mitochondria as its initial target. The subsequent increase of ROS then inflicts cell death and further worsens mitochondria function. Such mechanism may play an important role in CNS trauma and neurodegenerative diseases.  相似文献   

12.
Kaina B  Christmann M  Naumann S  Roos WP 《DNA Repair》2007,6(8):1079-1099
O(6)-methylguanine-DNA methyltransferase (MGMT) plays a crucial role in the defense against alkylating agents that generate, among other lesions, O(6)-alkylguanine in DNA (collectively termed O(6)-alkylating agents [O(6)AA]). The defense is highly important, since O(6)AA are common environmental carcinogens, are formed endogenously during normal cellular metabolism and possibly inflammation, and are being used in cancer therapy. O(6)AA induced DNA damage is subject to repair, which is executed by MGMT, AlkB homologous proteins (ABH) and base excision repair (BER). Although this review focuses on MGMT, the mechanism of repair by ABH and BER will also be discussed. Experimental systems, in which MGMT has been modulated, revealed that O(6)-methylguanine (O(6)MeG) and O(6)-chloroethylguanine are major mutagenic, carcinogenic, recombinogenic, clastogenic and killing lesions. O(6)MeG-induced clastogenicity and cell death require MutS alpha-dependent mismatch repair (MMR), whereas O(6)-chloroethylguanine-induced killing occurs independently of MMR. Extensive DNA replication is required for O(6)MeG to provoke cytotoxicity. In MGMT depleted cells, O(6)MeG induces apoptosis almost exclusively, barely any necrosis, which is presumably due to the remarkable ability of secondarily formed DNA double-strand breaks (DSBs) to trigger apoptosis via ATM/ATR, Chk1, Chk2, p53 and p73. Depending on the cellular background, O(6)MeG activates both the death receptor and the mitochondrial apoptotic pathway. The inter-individual expression of MGMT in human lymphocytes is highly variable. Given the key role of MGMT in cellular defense, determination of MGMT activity could be useful for assessing a patient's drug sensitivity. MGMT is expressed at highly variable amounts in human tumors. In gliomas, a correlation was found between MGMT activity, MGMT promoter methylation and response to O(6)AA. Although the human MGMT gene is inducible by glucocorticoids and genotoxins such as radiation and alkylating agents, the role of this induction in the protection against carcinogens and the development of chemotherapeutic alkylating drug resistance are still unclear. Modulation of MGMT expression in tumors and normal tissue is currently being investigated as a possible strategy for improving cancer therapy.  相似文献   

13.
14.
Muscle inflammation is often associated with its expansion. Bladder smooth muscle inflammation-induced cell death is accompanied by hyperplasia and hypertrophy as the primary cause for poor bladder function. In mice, DNA damage initiated by chemotherapeutic drug cyclophosphamide activated caspase 1 through the formation of the NLRP3 complex resulting in detrusor hyperplasia. A cyclophosphamide metabolite, acrolein, caused global DNA methylation and accumulation of DNA damage in a mouse model of bladder inflammation and in cultured bladder muscle cells. In correlation, global DNA methylation and NLRP3 expression was up-regulated in human chronic bladder inflammatory tissues. The epigenetic silencing of DNA damage repair gene, Ogg1, could be reversed by the use of demethylating agents. In mice, demethylating agents reversed cyclophosphamide-induced bladder inflammation and detrusor expansion. The transgenic knock-out of Ogg1 in as few as 10% of the detrusor cells tripled the proliferation of the remaining wild type counterparts in an in vitro co-culture titration experiment. Antagonizing IL-1β with Anakinra, a rheumatoid arthritis therapeutic, prevented detrusor proliferation in conditioned media experiments as well as in a mouse model of bladder inflammation. Radiation treatment validated the role of DNA damage in the NLRP3-associated caspase 1-mediated IL-1β secretory phenotype. A protein array analysis identified IGF1 to be downstream of IL-1β signaling. IL-1β-induced detrusor proliferation and hypertrophy could be reversed with the use of Anakinra as well as an IGF1 neutralizing antibody. IL-1β antagonists in current clinical practice can exploit the revealed mechanism for DNA damage-mediated muscular expansion.  相似文献   

15.
Oxidative stress is one of the hypotheses involved in the etiology of Alzheimer's disease (AD). Considerable attention has been focused on increasing the intracellular glutathione (GSH) levels in many neurodegenerative diseases, including AD. Pycnogenol (PYC) has antioxidant properties and stabilizes intracellular antioxidant defense systems including glutathione levels. The present study investigated the protective effects of PYC on acrolein-induced oxidative cell toxicity in cultured SH-SY5Y neuroblastoma cells. Decreased cell survival in SH-SY5Y cultures treated with acrolein correlated with oxidative stress, increased NADPH oxidase activity, free radical production, protein oxidation/nitration (protein carbonyl, 3-nitrotyrosine), and lipid peroxidation (4-hydroxy-2-nonenal). Pretreatment with PYC significantly attenuated acrolein-induced cytotoxicity, protein damage, lipid peroxidation, and cell death. A dose-response study suggested that PYC showed protective effects against acrolein toxicity by modulating oxidative stress and increasing GSH. These findings provide support that PYC may provide a promising approach for the treatment of oxidative stress-related neurodegenerative diseases such as AD.  相似文献   

16.
Mitra S 《DNA Repair》2007,6(8):1064-1070
This review describes the history of studies on alkylation damage of mammalian genomes and its carcinogenic consequences that led to the discovery of a unique DNA repair protein, named MGMT. MGMT repairs O(6)-alkylguanine, a critical mutagenic lesion induced by alkylating agents. The follow-up studies in mammalian cells following the discovery of the ubiquitous repair protein in E. coli are summarized.  相似文献   

17.
Methylation damage response in hematopoietic progenitor cells   总被引:1,自引:0,他引:1  
The cellular response to methylation DNA damage was compared in multipotent CD34(+) hematopoietic stem cells and mature CD34(-) cells isolated from cord blood of the same donor. Cytofluorimetric analysis of freshly isolated cord blood cells indicated that both cell types were in the G0/G1 phase of the cell cycle. Quantitative RT-PCR identified a general trend towards high expression of several DNA repair genes in CD34(+) cells compared to their terminally differentiated CD34(-) counterparts. The overexpressed genes included members of the mismatch repair (MMR) (MSH2, MSH6, MLH1, PMS2), base excision repair (AAG, APEX), DNA damage reversal (O(6)-methylguanine DNA methyltransferase) (MGMT), and DNA double strand breaks repair pathways. These differences in gene expression were not apparent in CD34(+) and CD34(-) cells obtained following expansion of CD34(+) cells in a medium containing early acting cytokines. Early progenitor CD34(+) and early precursor CD34(-) cells form the two populations isolated under these experimental conditions, and both contain a significant proportion of cycling cells. The methylating agent N-methyl-N-nitrosourea (MNU) induced similar levels of apoptosis in these cycling CD34(+) and CD34(-) cells. Cytotoxicity required the presence of the MGMT inhibitor O(6)-benzylguanine and the timing of MNU cell death (48 and 72h) was similar in CD34(+) and CD34(-) cells. These data indicate that cycling CD34(+) and CD34(-) cells are equally sensitive to methylation damage. MGMT provides significant protection against MNU toxicity and MGMT and MMR play the expected roles in the MNU sensitivity of these cells.  相似文献   

18.
Only a few of the genes involved in DNA repair in mammalian cells have been isolated, and induction of a DNA repair gene in response to DNA damage has not yet been established. DNA polymerase beta (beta-polymerase) appears to have a synthetic role in DNA repair after certain types of DNA damage. Here we show that the level of beta-polymerase mRNA is increased in CHO cells after treatment with several DNA-damaging agents.  相似文献   

19.
O6‐methylguanine‐DNA methyltransferase (MGMT) is a DNA‐repair protein promoting resistance of tumor cells to alkylating chemotherapeutic agents. Glioma cells are particularly resistant to this class of drugs which include temozolomide (TMZ) and carmustine (BCNU). A previous study using the RNA microarray technique showed that decrease of MGMT mRNA stands out among the alterations in gene expression caused by the cell growth‐depressing transfection of a T98G glioma cell line with liver‐type glutaminase (LGA) [Szeliga et al. (2009) Glia, 57, 1014]. Here, we show that stably LGA‐transfected cells (TLGA) exhibit decreased MGMT protein expression and activity as compared with non‐transfected or mock transfected cells (controls). However, the decrease of expression occurs in the absence of changes in the methylation of the promoter region, indicating that LGA circumvents, by an as yet unknown route, the most common mechanism of MGMT silencing. TLGA turned out to be significantly more sensitive to treatment with 100–1000 μM of TMZ and BCNU in the acute cell growth inhibition assay (MTT). In the clonogenic survival assay, TLGA cells displayed increased sensitivity even to 10 μM TMZ and BCNU. Our results indicate that enrichment with LGA, in addition to inhibiting glioma growth, may facilitate chemotherapeutic intervention.  相似文献   

20.
The high bladder toxicity of the alkylating oxazaphosphorine anticancer drugs, cyclophosphamide and ifosfamide is effectively reduced by the concomitant administration of mesna (sodium 2-mercaptoethane sulphonate). The formation and rapid urinary excretion of conjugates of the activated (4-hydroxylated) oxazaphosphorine metabolites with mesna has been suggested as the pharmacological basis for the selective detoxification, but separation and identification of such metabolites in vivo have been extremely difficult due to their high polarity and chemical lability. In this study an ion-pair extraction procedure in combination with positive and negative ion fast atom bombardment mass spectrometry has been developed which enabled the identification and quantification of the conjugation products of activated oxazaphosphorine metabolites with mesna in urine. The conjugates extracted as the tetra-n-butylammonium salts are directly identified by their characteristic positive molecular ion adducts and fragment ions, and the corresponding abundant molecular anions. The pattern of molecular and fragment ion formation was established by comparison of the fast atom bombardment mass spectra of synthetic cyclophosphamide-mesna conjugates with various organic and inorganic counter ions. The ifosfamide-4-(2-thioethylsulphonate) (ifosfamide-mesna) conjugate was identified as a metabolite in the urine of rats, and in patients after administration of the combination, ifosfamide + mesna. By means of a two-step extraction and with the use of suitable analogues as internal standards, procedures for the quantification of parent oxazaphosphorine and of oxazaphosphorine-mesna conjugates by negative ion fast atom bombardment mass spectrometry have been developed, and first examples for the determination of excretion kinetics are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号