首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
12 healthy men aged 21-25 years performed, in the sitting position, a sustained handgrip at 25% of their maximum voluntary contraction, first with each hand separately and then with both hands simultaneously. Heart rate (HR), systolic blood pressure (SBP), stroke volume (determined reographically) and plasma catecholamine concentration were measured during each handgrip test. The HR and SBP increased consistently during each handgrip test while stroke volume decreased by approximately 20% of the initial value. Cardiac output did not change significantly. There were no significant differences in the magnitude and dynamics of the cardiovascular responses between the tests with one and with both hands. Plasma noradrenaline and adrenaline levels showed similar elevations in response to handgrip performed with the right hand and with both hands, while during the exercise performed with the left hand the increase in the plasma catecholamine concentration was less pronounced. It was concluded that: (1) during sustained handgrip, performed in the sitting position by young healthy subjects, the stroke volume markedly decreases and cardiac output does not change significantly in spite of the increased HR; (2) the cardiovascular and sympatho-adrenal responses to static handgrip do not depend on the mass of contracting muscle when the same relative tension is developed.  相似文献   

2.
To examine the responses of the sympatho-adrenal system to reduced oxygen supply we studied plasma and tissue concentrations of catecholamines during normoxemia, hypoxemia, and asphyxia in 22 fetal guinea pigs near term. Fetal blood was obtained by cardiopuncture in utero under ketamine/xylazine-anesthesia. Catecholamines were determined in plasma and tissue of 15 organs and 14 brain parts by HPLC-ECD. During normoxemia (SO2 54 +/- 4 (SE) %, pH 7.36 +/- 0.02, n = 5) plasma catecholamine levels were low (norepinephrine 447 +/- 53, epinephrine 42 +/- 12, dopamine 44 +/- 6 pg/ml). During hypoxemia (SO2 27 +/- 3%, pH 7.32 +/- 0.01, n = 6) and asphyxia (SO2 24 +/- 2%, pH 7.23 +/- 0.02, n = 11) tissue catecholamine concentrations changed with changing blood gases and with increasing plasma catecholamines. Norepinephrine concentrations increased in both skin and lung and decreased in liver, pancreas, and scalp; those of epinephrine increased in the heart, lung liver, and scalp and decreased in the adrenal. There were only minor changes in brain catecholamine concentrations except for a 50% reduction in dopamine in the caudate nucleus. Concentrations of dopamine catabolite 3,4-dihydroxyphenylacetic acid decreased in many brain parts, suggesting that cerebral catecholamine metabolism was affected by hypoxemia and asphyxia. We conclude that the sympatho-adrenal system of fetal guinea pigs near term is mature and that its stimulation by reduced fetal oxygen supply leads to changes in both plasma and tissue catecholamine concentrations.  相似文献   

3.
Plasma catecholamine concentrations and dopamine-beta-hydroxylase activities were studied in 29 participants of a six-day cross-country ski-hike (260 km) to elucidate the adaptive responses of the sympatho-adrenal system to prolonged heavy exercise. Immediately after skiing on the first skiing day plasma noradrenaline concentrations appeared to be over twice as high as in the morning. On the morning of the fourth day noradrenaline levels had increased significantly when compared to those of the first morning. Concentrations after skiing on the fourth day were, however, about the same as in the first evening. After a submaximal ergometer test performed immediately after the skiing concentrations were still raised and the relative enhancement by this short-term exercise was about the same magnitude (40--60 %) on every test day. On the sixth day noradrenaline concentrations were about the same level as on the fourth day. Eleven days after the hike the basal noradrenaline levels were still about 25 % higher than before it. The changes of plasma adrenaline concentrations were in the same direction although not as striking as those of noradrenaline. Dopamine alterations were negligible. A significant but reversible decrease in plasma dopamine-beta-hydroxylase activities and cholesterol concentrations was found during the hike. The present results show that the sympatho-adrenal system is activated during the first few days of a ski-hike type prolonged exercise. A plateau developed in about four days. There were no signs of a decreased sympatho-adrenal response to a short-term heavy load.  相似文献   

4.
Physostigmine and an 1-hour immobilisation stress similarly affected functions of the sympatho-adrenal and cardiovascular systems activating the catecholamine secretion and increasing the blood pressure. Yohimbine potentiated the secretory effect but did not change the pressor effect. Intermediate administration of atropine completely eliminated both effects of physostigmine but, being administered prior to the immobilisation, it potentiated the secretory response without affecting the pressor response. The findings reveal a difference in central cholinergic mechanisms of neurohumoral and haemodynamic responses to physostigmine and stress.  相似文献   

5.
We studied serial plasma catecholamine levels in healthy newborn sheep over the first ten days of life. The results show that plasma norepinephrine values in newborn sheep are 3-4 fold higher, and plasma epinephrine values are two-fold higher than values in term fetal sheep. These elevations are sustained over the first 10 days of life. Cardiovascular (heart rate and blood pressure) and metabolic parameters (glucose and free fatty acids) are also significantly elevated above fetal levels. We performed graded catecholamine infusions in newborn animals and adult ewes to determine the minimum plasma catecholamine concentrations necessary for discernible physiologic effects. In response to step-wise increases in epinephrine or norepinephrine infusion rates, there were immediate increases in blood pressure and other physiologic responses. This pattern was seen in both newborn and adult animals, and differed from previous observations in fetal sheep where log-linear, dose response curves characteristic of a threshold response were seen. These results suggest that during the first two weeks of life plasma catecholamine levels are elevated above the threshold value for physiologic responses. These sustained elevations in circulating catecholamines are important in the maintenance of physiologic homeostasis.  相似文献   

6.
To determine the relationship between vascular response and plasma levels of kinins, 10 anesthetized mongrel dogs received an intravenous infusion of bradykinin in graded doses (0.3 to 10.0 μg/kg/mm). Arterial pressure was recorded and plasma kinins determined by radioimmunoassay. There was a significant (p < 0.001) correlation between the increment in plasma kinins and the decrement in blood pressure which stabilized within five minutes. At the highest dose, arterial blood pressure fell by 37 ± 5 mmHg, and plasma kinins had risen by 1.5 ± 0.4 ng/ml. The magnitude of the change in plasma kinin levels observed in this study is similar to that acutely reported with administration of converting enzyme inhibitors. Thus, kinins may contribute to the hypotensive effect of these agents.  相似文献   

7.
Clinical research was conducted into the possible interrelationships between prostaglandin (PG) F2alpha and the human sympathetic nervous system. The study also permitted comparison of the relative sensitivity of 2 indicators of sympatho-adrenal activity: 1) the determination of circulating catecholamines, epinephrine and norepinephrine; and 2) analysis of plasma dopamine-8-hydroxylase activity. Intravenous PGF2alpha infusion was administered to college students 12-18 weeks pregnant to produce abortion; the results were compared to results from nonpregnant controls. Circulating norepinephrine but not plasma epinephrine or dopamine-8-hydroxylase levels were increased in response to the PG. There was no correlation between plasma epinephrine and plasma norepinephrine levels. Plasma dopamine-8-hydroxylase activity was found not to be significantly changed by pregnancy, administration of the analgesic and antiemetic, or the PG infusion. In fact, central venous dopamine-8-hydroxylase activity did not differ significantly from that of arterial blood. The PG did not affect cardiac output or maximal expiratory flow rate. It is suggested that the nausea and diarrhea accompanying PGF2alpha infusion may put stress on the sympathetic nervous activity causing the observed increase in plasma norepinephrine concentration. Since no changes in blood pressure, heart rate, central venous pressure, or cardiac output were observed, it is unlikely that PGF2alpha causes even slight impairment of sympathetic nervous system activity.  相似文献   

8.
This study was undertaken (1) to examine the relation of plasma catecholamine and insulin levels to the blood pressure response during and after submaximal exercise, (2) to verify whether the blood pressure response to an epinephrine infusion is associated with the blood pressure response to a prolonged submaximal exercise, and (3) to study some potential correlates of the hypotensive effect of prolonged aerobic exercise. Nine normotensive young men (mean age 22.0 +/- 1.4 years) were subjected to a 1-h epinephrine infusion protocol and a 1-h submaximal exercise test on a cycle ergometer. The two tests were performed 1 week apart. The physiological and hormonal responses observed during the submaximal exercise test were generally greater than those observed during the epinephrine infusion test. Blood pressure responses in both tests showed no significant association with changes in plasma insulin levels. Changes in plasma norepinephrine concentration were positively correlated with changes in systolic blood pressure during the submaximal exercise test but not during the epinephrine infusion. Results also showed that the blood pressure response to epinephrine infusion was not correlated with the blood pressure response to submaximal exercise. However, post-exercise and post-infusion systolic blood pressure responses (differences between "post-test" and "resting" values) were significantly associated (r = 0.81, p less than 0.01). In addition, a significant hypotensive effect of submaximal exercise was observed for both systolic and diastolic blood pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
There is evidence that endogenous opioids are involved in blood pressure regulation. In the present study the effect of naloxone on the cardiovascular, sympathoadrenomedullary and renin-aldosterone response to physical exercise was investigated in 8 healthy males. Each subject performed a submaximal work test twice, i.e. with and without naloxone. The test consisted of ergometer bicycling for 10 minutes on 50% of the maximal working capacity (MWC), immediately followed by 10 min on 80% of MWC. Ten minutes before exercise the subjects received in a single blind randomized order a bolus dose of naloxone (100 micrograms/kg) or a corresponding volume of the preservatives of the naloxone preparation (control) followed by a slow infusion of naloxone (50 micrograms/kg/h) or preservatives, respectively. Naloxone was without effect on the exercise-induced changes in systolic blood pressure, heart rate, plasma noradrenaline, renin activity and aldosterone, but the adrenaline response increased markedly. The present results indicate that opioid receptors are involved in the plasma adrenaline response to submaximal exercise, but not in the regulation of systolic blood pressure, heart rate, plasma noradrenaline, renin activity and plasma aldosterone.  相似文献   

10.
Objective: To compare the thermic response to a meal between men and women of varied body composition and to determine whether adrenergic amines extracted from citrus aurantium (CA) induce an increase in metabolic rate and enhance the thermic response to the meal. Research Methods and Procedures: In 30 healthy weight‐stable subjects (17 women, 13 men; BMI: 20 to 42 kg/m2), body composition was determined by bioimpedance analysis followed by resting energy expenditure for 20 minutes, and the thermic effect of food (TEF) of a 1.7‐MJ, 30‐gram protein meal was determined intermittently for 300 minutes by indirect calorimetry. In a subset of 22 subjects, the TEFs of CA alone and when added to the same 1.7‐MJ meal were determined. Blood pressure and pulse before and throughout the studies and catecholamine excretion were determined. Results: TEF was significantly lower in women than men (152 ± 7 vs. 190 ± 12 kJ and 8.8 ± 0.4% vs. 11.0 ± 0.7% of meal), independently of age and magnitude of adiposity. The thermic response to CA alone was higher in men, but, when added to the meal, CA increased TEF only in women and to values no longer different from men. CA had no effect on blood pressure and pulse rate but increased epinephrine excretion by 2.4‐fold. Discussion: A 20% lower TEF in women suggests a diminished sympathetic nervous system response to meals, because with CA, TEF increased by 29% only in women. However, this acute response may not translate into a chronic effect or a clinically significant weight loss over time.  相似文献   

11.
12.
We have presented a sensitive and relatively simple and inexpensive method for continuous sampling and determination of plasma catecholamines and a major dopamine metabolite, DOPAC. This method provides the basis for determination of the short-term magnitude of catecholamine response as well as the time course of such a response following several physical or psychological interventions. Resting levels of plasma catecholamines--norepinephrine 292 pg/ml, epinephrine 81 pg/ml and dopamine 29 pg/ml--are comparable to those obtained by other methods. Dopamine and free DOPAC were unaffected by physical or psychological interventions while norepinephrine was considerably increased by isometric handgrip, knee bends, and cold pressor and epinephrine increased during knee bends, mental arithmetic, cold pressor, and blood pressure measurement.  相似文献   

13.
The effects of nimodipine on the cocaine-induced alterations in blood pressure, heart rate, and plasma catecholamines were studied in the squirrel monkey. Cocaine in intravenously administered doses of 0.5, 1, and 2 mg/kg produced significant increases in blood pressure and significant decreases in heart rate. These cardiovascular changes were associated with transient episodes of arrhythmias and with significant increases in plasma concentrations of dopamine, epinephrine, and norepinephrine. Nimodipine, 1 micrograms/kg/min for 5 min administered intravenously 5 min after cocaine, corrects the cardiovascular and plasma catecholamine concentration changes induced by this alkaloid. The same dose of nimodipine administered 5 min before cocaine prevents elevations of blood pressure. Plasma catecholamine increments are also prevented except for the highest dose of cocaine. Cardiovascular changes induced by cocaine administration in the squirrel monkey are temporally associated with significant increments in plasma catecholamines. Administration of nimodipine prevents or minimizes these endocrine and physiologic changes.  相似文献   

14.
The analysis of the status of sympatho-adrenal and hypophysis-adrenal medulla systems of adaptation in children living in territories contaminated by radionuclides was carried out. A decrease in the catecholamine level in children's urine and hyperactivity of the hormonal response of adrenal medulla to endogenous ACTH indicated the reduced ability of adaptation and decreased resistance of children's organisms to stress factors of the environment.  相似文献   

15.
When electrical stimulation is applied to the ventromedial hypothalamic zone one observes an increase in systemic blood pressure. There also occur blood pressure variations in the isolated femoral circuit: two distinct phenomena were observed. The early event, being either an increase or a decrease in peripheral resistance, is directly related to the amount of noradrenaline produced locally. The late event is due to catecholamines arriving from the general circulation. Inhibition of local catecholamine release through the baroreceptor reflex and inhibition of ganglionic transmission by a large and sudden increase in adrenaline blood levels do influence the response in the isolated femoral circuit. Moreover the peripheral vasomotor tonus seems to be influenced by yet another mechanism, independent of local catecholamine release. This delicate mechanism depends on the balance between the degree of excitation of hypothalamic pressor (medial) and depressor (lateral) zones.  相似文献   

16.
Transposing a rat from the home cage to a new cage produces a cardiovascular response (transposition response) characterized by an increase in hindquarter blood flow with unchanged systemic arterial pressure. Arterial blood samples were collected from rats before and during this response for radioenzymatic assay of catecholamines. During the transposition response, the concentration of adrenaline and noradrenaline in plasma increased about six- and two-fold, respectively. Ablation of the adrenal medulla prevented these changes in plasma catecholamine concentration. Constant i.v. infusion of adrenaline, at rates producing a hindquarter flow approximately matching that observed during the transposition response, evoked an increase in plasma adrenaline concentration also approximately matching the increase observed during the transposition response. It is concluded that the increase in plasma adrenaline secreted from the adrenal medulla is the main cause of the increase in hindquarter blood flow in the transposition response.  相似文献   

17.
Uncontrolled hemorrhage, resulting from traumatic injuries, continues to be the leading cause of death in civilian and military environments. Hemorrhagic deaths usually occur within the first 6 hours of admission to hospital; therefore, early prehospital identification of patients who are at risk for developing shock may improve survival. The aims of the current study were: 1. To establish and characterize a unique model of uncontrolled internal hemorrhage induced by massive renal injury (MRI), of different degrees (20-35% unilateral nephrectomy) in rats, 2. To identify early biomarkers those best predict the outcome of severe internal hemorrhage. For this purpose, male Sprague Dawley rats were anesthetized and cannulas were inserted into the trachea and carotid artery. After abdominal laparotomy, the lower pole of the kidney was excised. During 120 minutes, hematocrit, pO2, pCO2, base excess, potassium, lactate and glucose were measured from blood samples, and mean arterial pressure (MAP) was measured through arterial tracing. After 120 minutes, blood loss was determined. Statistical prediction models of mortality and amount of blood loss were performed. In this model, the lowest blood loss and mortality rate were observed in the group with 20% nephrectomy. Escalation of the extent of nephrectomy to 25% and 30% significantly increased blood loss and mortality rate. Two phases of hemodynamic and biochemical response to MRI were noticed: the primary phase, occurring during the first 15 minutes after injury, and the secondary phase, beginning 30 minutes after the induction of bleeding. A Significant correlation between early blood loss and mean arterial pressure (MAP) decrements and survival were noted. Our data also indicate that prediction of outcome was attainable in the very early stages of blood loss, over the first 15 minutes after the injury, and that blood loss and MAP were the strongest predictors of mortality.  相似文献   

18.
To confirm and extend the results of previous studies which demonstrated central cardiovascular effects of vasopressin in anesthetized rats, we determined blood pressure and heart rate changes for 30 minutes after intracerebroventricular injections of arginine vasopressin, arginine vasotocin and oxytocin in conscious rats. As compared to sham injections, significantly greater increases in either systolic or diastolic blood pressure were noted over the 30 minutes which followed the injection of 0.15, 1.0 or 10.0 nM of either vasopressin or vasotocin. In animals given vasopressin, plasma levels of the peptide were determined. There was a substantial increase in plasma vasopressin only after the highest dose. Overall blood pressure responses to doses of oxytocin as high as 100 nM were not significantly different than sham injections. Heart rate following both vasopressin and vasotocin was increased at 0.15 nM, was initially decreased then increased at 1.0 nM and was substantially decreased after the 10.0 nM dose. There was a significant increase in heart rate at the 10.0 nM and 100 nM doses of oxytocin. Dose response curves for systolic blood pressure and heart rate 20 minutes after injection were similar for vasopressin and vasotocin. We conclude that arginine vasopressin has significant central pressor and tachycardic effects in conscious rats, and it is related, at least in part, to the tail structure of the peptide, which is shared with arginine vasotocin.  相似文献   

19.
After hyperventilation, systolic blood pressure (SBP) significantly decreased in 10 subjects (group 1), did not change in eight (group 2) and increased in 15 (group 3). Diastolic blood pressure and heart rate increased in all groups. The decrease in SBP was associated with a decrease in plasma catecholamines and increase in beta-endorphin, whereas the increase in SBP was accompanied by an increase in catecholamine and Met-enkephalin levels. Naloxone abolished the hyperventilation-induced SBP and catecholamine decrease only in group 1. These findings show an activation of the endogenous opioid system after hyperventilation and the role of beta-endorphin in reducing SBP in response to the test.  相似文献   

20.
Fetal sheep were thyroidectomized at 80 days' gestation and reoperated at 118-122 days for insertion of vascular catheters. The effects of hypoxaemia and intravenous tyramine infusion on plasma catecholamine concentrations, blood pressure and heart rate were then determined in experiments at 125-135 days' gestation. Age matched intact fetuses were also studied. Thyroidectomy was associated with increased concentrations of noradrenaline, adrenaline and dopamine in some thoracic and abdominal organs, increased noradrenaline concentrations in the cerebellum, and decreased adrenaline concentrations in the hypothalamus, cervical spinal cord, and superior cervical and inferior mesenteric ganglia. Arterial pressure was significantly lower in the thyroidectomized fetuses (34.0 +/- 0.15 mmHg) than in intact fetuses (44.7 +/- 0.2 mmHg; p less than 0.001). In contrast, plasma noradrenaline concentrations were significantly higher in the thyroidectomized fetuses (2.04 +/- 0.25 ng/ml) compared to the intact fetuses (0.99 +/- 0.08 ng/ml; P less than 0.001). In the intact fetuses there was a significant increase in plasma noradrenaline concentration and blood pressure during hypoxaemia, and bradycardia at the onset of hypoxaemia. In contrast, in the thyroidectomized fetuses hypoxaemia did not cause significant change in plasma catecholamine concentrations, blood pressure or heart rate. Infusion of tyramine produced a 1.9-fold increase of plasma noradrenaline in thyroidectomized fetuses compared to a 9.2-fold increase in the intact fetuses (P less than 0.05). Tyramine infusion caused a similar proportional increase of blood pressure in both thyroidectomized and intact fetuses. Heart rate decreased during the tyramine-induced hypertension in the intact fetus, but increased in the thyroidectomized fetuses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号