首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined the nature and regulation of the inward L-3,4-dihydroxyphenylalanine (L-DOPA) transporter in rat capillary cerebral endothelial (RBE4) cells, type 1 astrocytes (DI TNC1), and Neuro-2a neuroblastoma cells. In all three cell types, the inward transfer of L-DOPA was largely promoted through the 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid-sensitive and sodium-independent L-type amino acid transporter. Only in DI TNC1 cells was the effect of maneuvers that increase intracellular cAMP levels accompanied by increases in L-DOPA uptake. Also, only in DI TNC1 cells was the effect of the guanylyl cyclase inhibitor LY-83583 accompanied by a 65% increase in L-DOPA accumulation, whereas the nitric oxide donor sodium nitroprusside produced a 25% decrease in L-DOPA accumulation. In all three cell types, the Ca2+/calmodulin inhibitors calmidazolium and trifluoperazine inhibited L-DOPA uptake in a noncompetitive manner. Thapsigargin (1 and 3 microM) and A-23187 (1 and 3 microM) failed to alter L-DOPA accumulation in RBE4 and Neuro-2a cells but markedly increased L-DOPA uptake in DI TNC1 cells. We concluded that L-DOPA in RBE4, DI TNC1, and Neuro-2a cells is transported through the L-type amino acid transporter and appears to be under the control of Ca2+/calmodulin-mediated pathways. Astrocytes, however, are endowed with other processes that appear to regulate the accumulation of L-DOPA, responding positively to increases in intracellular Ca2+ and cAMP and to decreases in cGMP.  相似文献   

2.
The present study examined the involvement of protein kinase A (PKA), protein kinase G (PKG), protein kinase C (PKC), protein tyrosine kinase (PTK) and Ca(2+)/calmodulin mediated pathways on the luminal uptake of L-DOPA through the L-type amino acid transporter in immortalized rat capillary cerebral endothelial (REB-4) cells. Non-linear analysis of the saturation curve for L-DOPA revealed a K(m)value (in microM) of 71+/-9 and a V(max)value of 17+/-1 (in nmol mg protein/6 min). L-DOPA uptake at the luminal cell border was a sodium-independent process and insensitive to N-(methylamino)-isobutyric acid (MeAIB, 1 m m), but sensitive to 2-aminobicyclo(2,2,1)-heptane-2-carboxylic acid (BHC, IC(50)=140 microM). The Ca(2+)/calmodulin inhibitors calmidazolium and trifluoperazine inhibited L-DOPA (2.5 microM) uptake with IC(50)s of 23 and 33 microM, respectively. The inhibitory effect of BHC on the accumulation of L-DOPA was of the competitive type, whereas that of calmidazolium and trifluoperazine was of the non-competitive type. Modulators of PKA (cyclic AMP, forskolin, isobutylmethylxanthine and cholera toxin), PKG (cyclic GMP, zaprinast, LY 83583 and sodium nitroprusside), PKC (phorbol 12,13-dibutyrate, staurosporine and chelerythrine) and PTK (genistein and tyrphostin 25) failed to affect the accumulation of a non-saturating (2.5 microM) concentration of L-DOPA. It is concluded that L-DOPA uptake in RBE-4 cells is promoted through the L-type amino acid transporter and appears to be under the control of calmodulin mediated pathways.  相似文献   

3.
TNF activates P-glycoprotein in cerebral microvascular endothelial cells.   总被引:2,自引:0,他引:2  
BACKGROUND/AIMS: Multidrug resistance proteins (MDRs, including P-glycoproteins) are efflux pumps that serve important biological functions but hinder successful drug delivery to the CNS. Many chemotherapeutic agents, anti-epileptics, anti-HIV drugs, and opiates are substrates for MDRs. Therefore, understanding the regulation of MDRs in the endothelial cells composing the blood-brain barrier has therapeutic implications. METHODS: We used microarray, real time RT-PCR, Western blotting, and uptake of vinblastine by RBE4 cerebral endothelial cells to test the effects of tumor necrosis factor alpha (TNF) on the expression and functions of P-glycoprotein (MDR1). RESULTS: The proinflammatory cytokine TNF specifically induced the expression and enhanced the function of MDR1 in RBE4 cells. The persistent upregulation of MDR1 mRNA was shown by cDNA microarray at 6, 12, and 24 h after TNF treatment. This was confirmed by real-time RT-PCR between 2 and 24 h. MDR1 protein expression was increased 6 to 24 h after TNF treatment and resulted in a significant reduction in the cellular uptake of (3)H-vinblastine. CONCLUSION: The drug efflux transporter in cerebral endothelial cells can be upregulated by TNF. This suggests that adjunctive anti-TNF treatment has novel therapeutic potential in conditions such as brain cancer, epilepsy, neuroAIDS, and chronic pain.  相似文献   

4.
On aerobic incubation of rat cerebral cortex slices with anomers ofd-glucose and with 2-deoxy-d-glucose (2DG) for 5 min, the disappearance of -d-glucose from the incubation mixture was greater than that of -d-glucose and both anomers had a greater rate of disappearance than that of 2DG. In addition, there were significantly greater consumption of oxygen and production of lactate with the -anomer than with the -anomer. In similar experiments with3H-labeledd-glucose anomers and [1-3H]-3-O-methyl-d-glucose (3MG), the accumulation of [1-3H]--d-glucose (up to 5 min) by rat cerebral cortex slices was greater than that of [1-3H]--d-glucose. Although initially lower than that of the anomers, the accumulation of [1-3H]-3MG increased at a greater rate and, by 5 min of incubation, was greater than that of both glucose anomers. This preferential accumulation was seen to disappear when the slices were preincubated with 2DG (hexokinase inhibitor) or when the temperature of incubation was reduced to 20°C. Under those conditions the data with the glucose anomers were similar to those obtained with 3MG. Our data then suggested that the greater accumulation of -d-glucose than of -d-glucose by the slices was probably not due to differences in transport through brain cell membranes but rather to the preferential metabolism of the -d-glucose.  相似文献   

5.
Man-made microwave and radiofrequency (RF) radiation technologies have been steadily increasing with the growing demand of electronic appliances such as microwave oven and cell phones. These appliances affect biological systems by increasing free radicals, thus leading to oxidative damage. The aim of this study was to explore the effect of 2.45 GHz microwave radiation on histology and the level of lipid peroxide (LPO) in Wistar rats. Sixty-day-old male Wistar rats with 180 ± 10 g body weight were used for this study. Animals were divided into two groups: sham exposed (control) and microwave exposed. These animals were exposed for 2 h a day for 35 d to 2.45 GHz microwave radiation (power density, 0.2 mW/cm2). The whole-body specific absorption rate (SAR) was estimated to be 0.14 W/kg. After completion of the exposure period, rats were sacrificed, and brain, liver, kidney, testis and spleen were stored/preserved for determination of LPO and histological parameters. Significantly high level of LPO was observed in the liver (p < 0.001), brain (p < 0.004) and spleen (p < 0.006) in samples from rats exposed to microwave radiation. Also histological changes were observed in the brain, liver, testis, kidney and spleen after whole-body microwave exposure, compared to the control group.

Based on the results obtained in this study, we conclude that exposure to microwave radiation 2 h a day for 35 d can potentially cause histopathology and oxidative changes in Wistar rats. These results indicate possible implications of such exposure on human health.  相似文献   


6.
Ricinus communis agglutinin I (RCA-I), a lectin that binds to D-galactosyl residues, intensely stained capillaries in cryostat sections of canine cerebral cortex when evaluated by the avidin-biotin-peroxidase complex method. Of seven lectins tested, only RCA-I gave strong staining of vessels and capillaries with little staining of other cortical cells. Ultrastructural studies using ferritin-, biotin-, and peroxidase-labeled RCA-I indicated that this lectin was bound to the luminal membrane of the cerebral capillary endothelial cell and that lectin receptors were distributed continuously along this membrane. Plasmalemma invaginations that bound RCA-I were also present in endothelial cells. Primary cultures of cerebral capillary endothelial cells grown on plastic or gelatin-coated glass substrates demonstrated staining of the cell membrane and perinuclear structures which appeared to be the Golgi complex and secondary lysosomes. These staining characteristics were retained when the cells were subcultured and were confirmed by ultrastructural studies. In contrast, light microscopy showed that fibronectin was more widely distributed in the cytoplasm, a finding consistent with its occurrence in the endoplasmic reticulum. This work provides support for the concept that lectins may be useful endothelial cell markers in both intact tissue and cell culture.  相似文献   

7.
The role of excitotoxicity in the cerebral damage of glutaryl-CoA dehydrogenase deficiency (GDD) is under intense debate. We therefore investigated the in vitro effect of glutaric (GA) and 3-hydroxyglutaric (3-OHGA) acids, which accumulate in GDD, on [(3)H]glutamate uptake by slices and synaptosomal preparations from cerebral cortex and striatum of rats aged 7, 15 and 30 days. Glutamate uptake was significantly decreased by high concentrations of GA in cortical slices of 7-day-old rats, but not in cerebral cortex from 15- and 30-day-old rats and in striatum from all studied ages. Furthermore, this effect was not due to cellular death and was prevented by N-acetylcysteine preadministration, suggesting the involvement of oxidative damage. In contrast, glutamate uptake by brain slices was not affected by 3-OHGA exposure. Immunoblot analysis revealed that GLAST transporters were more abundant in the cerebral cortex compared to the striatum of 7-day-old rats. Moreover, the simultaneous addition of GA and dihydrokainate (DHK), a specific inhibitor of GLT1, resulted in a significantly higher inhibition of [(3)H]glutamate uptake by cortical slices of 7-day-old rats than that induced by the sole presence of DHK. We also observed that both GA and 3-OHGA exposure did not alter the incorporation of glutamate into synaptosomal preparations from cerebral cortex and striatum of rats aged 7, 15 and 30 days. Finally, GA in vivo administration did not alter glutamate uptake into cortical slices from 7-day-old rats. Our findings may explain at least in part why cortical neurons are more vulnerable to damage at birth as evidenced by the frontotemporal cortical atrophy observed in newborns affected by GDD.  相似文献   

8.
Cortical spreading depression (CSD) was elicited by focused ultrasonic irradiation (800 kHz) of exposed cerebral cortex in anesthetized rats. With the acoustic output of 0.65 W at the probe-tissue contact (3 mm in diameter), CSD was elicited after 28-sec irradiation in normothermic rats. Reduction of cortical temperature to 31°C increased the threshold irradiation time to 82 sec on the average. Ten- to thirty-sec heating of cerebral cortex with a thermode elicited CSD when surface temperature exceeded 47°C. Histological examination of the cortical areas exposed to threshold irradiation revealed a central coagulation lesion surrounded by edema. It is concluded that the ultrasonic irradiation elicits CSD by dissipated heat. Differences in threshold duration of irradiation in hypothermic and normothermic rats were used to compute the threshold temperature which had to be exceeded in the critical volume of cortex in order to start CSD.  相似文献   

9.
Japanese quail (Coturnix coturnix japonica) embryos were irradiated continuously in ovo with 2.45-GHz continuous wave radiation during the first 12 days of embryogenesis at an incident power of 5 mW/cm2 and a specific absorption rate of 4.03 mW/g. The internal temperature of irradiated and nonirradiated (sham) eggs was 37.5 +/- 0.3 degrees C, which is the optimum temperature for incubating quail eggs. At 35 days after hatching irradiated and sham-irradiated males were paired with irradiated or sham-irradiated females and daily records of reproductive performance were collected through 224 days of age. Progeny were hatched from each of the male-female pairs, and progeny reproductive performance was measured from 35 through 168 days of age. Hatchability was not affected by irradiation during embryogeny. Mortality after hatching, egg production, egg weight, fertility, hatchability of eggs produced, and reproductive performance of the progeny were not affected by irradiation during embryogeny. These observations indicate that irradiation of quail embryos with low-level microwave radiation does not affect the reproductive capacity of the hatchlings or of progeny produced from quail irradiated during incubation.  相似文献   

10.
Using microwave irradiation during tissue fixation and immunostaining reduces sample preparation time and facilitates penetration of fixatives and antibody solutions into the tissues. This results in improved fixation and reduction of non-specific binding of antibodies, respectively. Experimental analyses of endothelial cells in blood vessels in situ have been limited because of the difficulty of tissue preparation. We report here a technique using intermittent microwave irradiation for blood vessel fixation and immunostaining the fixed tissues. Intermittent microwave irradiation during fixation reduced blood vessel contraction and resulted in well preserved morphology of blood vessels, especially the endothelial cells. Microwave irradiation also reduced non-specific binding of fluorescein-labeled antibodies. These microwave irradiation-assisted techniques are useful for analysis of endothelial cell function and for pathological study of blood vessels in situ.  相似文献   

11.
Possible causes of diminution of endothelial cells of rat brain vessels immediately after local irradiation have been investigated. It has been shown that the diminution occurs during the first 24 h following irradiation, its value (-15%) being independent of radiation dose within a wide range (from 5 to 100 Gy), and the cellularity is not restored during the subsequent two weeks of observation. Interphase death of part of cells distinguished by high radiosensitivity seems to be the most probable reason for the population heterogeneity observed.  相似文献   

12.
Rats were tested for neurobehavioral alterations immediately after exposure to 2.45-GHz (CW) microwave radiation at 10 mW/cm2 for 7 h. Behavioral tests used were locomotor activity, startle to an acoustic stimulus and acquisition and retention of a shock-motivated passive avoidance task. Both horizontal and vertical components of locomotor activity were assessed in 5-min epochs for a period of 30 min using photoelectric detectors. Microwave-exposed animals exhibited less activity than sham-exposed animals. This was most evident during the last 10-15 min of the 30-min test session. Twenty identical acoustical stimuli (8 KHz, 110 dB) were delivered to each rat at 40-s intervals. The microwave-exposed animals were less responsive to the stimuli than sham-exposed animals. Microwave exposure had no effect on the retention of a passive avoidance procedure when tested at 1 week after training. Both the locomotor activity and acoustic startle data demonstrate that, under the conditions of this experiment, microwave exposure may alter responsiveness of rats to novel environmental conditions or stimuli.  相似文献   

13.
Microwave irradiation at different frequencies gave unique results for the hydrolyses of glycosyl bonds by β-Glucosidase HT1. With the observed relative complex permittivity data for the reaction buffer, 2.45?GHz microwave radiation affected both waters and ions, while 5.80?GHz only affected waters. We, here, propose that would be one of the unique “microwave nonthermal effects”.  相似文献   

14.
Pertussis toxin (PTX) induces activation of l-arginine transport in pulmonary artery endothelial cells (PAEC). The effects of PTX on l-arginine transport appeared after 6 h of treatment and reached maximal values after treatment for 12 h. PTX-induced changes in l-arginine transport were not accompanied by changes in expression of cationic amino acid transporter (CAT)-1 protein, the main l-arginine transporter in PAEC. Unlike holotoxin, the beta-oligomer-binding subunit of PTX did not affect l-arginine transport in PAEC, suggesting that Galpha(i) ribosylation is an important step in the activation of l-arginine transport by PTX. An activator of adenylate cyclase, forskolin, and an activator of protein kinase A (PKA), Sp-cAMPS, did not affect l-arginine transport in PAEC. In addition, inhibitors of PKA or adenylate cyclase did not change the activating effect of PTX on l-arginine uptake. Long-term treatment with PTX (18 h) induced a 40% decrease in protein kinase C (PKC)-alpha but did not affect the activities of PKC-epsilon and PKC-zeta in PAEC. An activator of PKC-alpha, phorbol 12-myristate 13-acetate, abrogated the activation of l-arginine transport in PAEC treated with PTX. Incubation of PTX-treated PAEC with phorbol 12-myristate 13-acetate in combination with an inhibitor of PKC-alpha (Go 6976) restored the activating effects of PTX on l-arginine uptake, suggesting PTX-induced activation of l-arginine transport is mediated through downregulation of PKC-alpha. Measurements of nitric oxide (NO) production by PAEC revealed that long-term treatment with PTX induced twofold increases in the amount of NO in PAEC. PTX also increased l-[(3)H]citrulline production from extracellular l-[(3)H]arginine without affecting endothelial NO synthase activity. These results demonstrate that PTX increased NO production through activation of l-arginine transport in PAEC.  相似文献   

15.
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) has been recently identified as a mitogen specific for the endothelium of steroidogenic glands. Here we report a characterization of the signal transduction of EG-VEGF in a responsive cell type, bovine adrenal cortex-derived endothelial (ACE) cells. EG-VEGF led to a time- and dose-dependent phosphorylation of p44/42 MAPK. This effect was blocked by pretreatment with pertussis toxin, suggesting that G alpha(i) plays an important role in mediating EG-VEGF-induced activation of MAPK signaling. The inhibitor of p44/42 MAPK phosphorylation PD 98059 resulted in suppression of both proliferation and migration in response to EG-VEGF. EG-VEGF also increased the phosphorylation of Akt in a phosphatidylinositol 3-kinase-dependent manner. Consistent with such an effect, EG-VEGF was a potent survival factor for ACE cells. We also identified endothelial nitric-oxide synthase as one of the downstream targets of Akt activation. Phosphorylation of endothelial nitric-oxide synthase in ACE cells was stimulated by EG-VEGF with a time course correlated to the Akt phosphorylation. Our data demonstrate that EG-VEGF, possibly through binding to a G-protein coupled receptor, results in the activation of MAPK p44/42 and phosphatidylinositol 3-kinase signaling pathways, leading to proliferation, migration, and survival of responsive endothelial cells.  相似文献   

16.
The authors studied the engulfment of L-tryptophane-14C by gliacytes and synaptosomes of the rabbit cerebral cortex. The system of engulfment of the gliacytes was characterized by a high affinity to tryptophane (Km = 0.8 micrometer). Engulfment of tryptophane by synaptosomes had a lower affinity (Km = 50 micrometer). Psychotropic substances--chlorpromazine and imipramine produced an inhibitory influence on glial engulfment. The leading role of gliacytes in the trophic provision of the neurons and the normal course of neurodynamic processes is confirmed.  相似文献   

17.
In order to demonstrate possible specific effects of microwaves at the cellular level V-79 Chinese hamster cells were exposed to 2.45-GHz radiation at power levels of 20–200 mW/cm2 and at specific absorption rates of 10–100 mW/g. Intracellular cytoplasmic changes were observed by fluorescence polarization using a method based on the intracellular enzymatic hydrolysis of nonfluorescent fluorescein diacetate (FDA). At levels of absorbed energy below 90 J/g, modifications of microviscosity and mitochondrial state were absent, but a slight stimulation of enzymatic hydrolysis of FDA was observed which may be explained by microwave-induced alterations of cellular membranes possibly due to differences in heating pattern of microwaves compared to water-bath heating. At levels of absorbed energy above 90 J/g, the decrease of enzymatic hydrolysis of FDA, increase in degree of polarization, and increase of permeation of the fluorescent marker correlated well with the decrease in cell viability as measured by the exclusion of trypan blue. At equal absorbed energy, microwaves were found to exert effects comparable to classical heating except that permeation was slightly more affected by microwave than by classical heating. This suggests that membrane alteration produced by microwaves might differ from those induced by classical heating or that microwaves may have heated the membrane to higher temperatures than did classical heating.  相似文献   

18.
2.45GHz微波辐照后小鼠睾丸Caspase-3 mRNA及凋亡变化的研究   总被引:1,自引:0,他引:1  
目的:研究2.45GHz微波辐照对小鼠睾丸Caspase-3表达及细胞凋亡诱导作用.方法:采用平均功率密度为65mW/cm2和90mW/cm2的2.45GHz微波辐照小鼠15min,分别于相应时相点取材,采用RT-PCR的方法检测Caspase-3的mRNA表达,用TUNEL方法观察计数睾丸内细胞的凋亡情况.结果:65mW/cm2及90mW/cm2辐照后Caspase-3 mRNA均出现表达升高,65mW/cm2组于12h时达高峰.90 mW/cm2组在24h时达到高峰,90 mW/cm2升高幅度高于65 mW/cm2组;TUNEL结果显示受到微波辐照后,两组小鼠睾丸内均出现凋亡细胞或小体数量增加,但两组之间不存在显著差异.结论:2.45GHz微波能显著促进小鼠睾丸组织Caspase-3 mRNA的表达,存在时效和量效依赖关系;2.45GHz微波能显著诱导小鼠睾丸内细胞凋亡,存在时间依赖性.  相似文献   

19.
20.
A predominantly neurological presentation is common in patients with glutaric acidemia type I (GA-I). 3-hydroxyglutaric acid (3-OHGA), which accumulates in affected patients, has recently been demonstrated to play a central role in the neuropathogenesis of this disease. In the present study, we investigated the in vitro effects of 3-OHGA at concentrations ranging from 10 to 1000 microM on various parameters of the glutamatergic system, such as the basal and potassium-induced release of [3H]glutamate by synaptosomes, as well as on Na+-dependent [3H]glutamate uptake by synaptosomes and astrocytes and Na+-independent [3H]glutamate uptake by synaptic vesicles from cerebral cortex of 30-day-old Wistar rats. First, we observed that exposure of cultured astrocytes to 3-OHGA for 20 h did not reduce their viability. Furthermore, 3-OHGA significantly increased Na+-dependent [3H]glutamate uptake by astrocytes by up to 80% in a dose-dependent manner at doses as low as 30 microM. This effect was not dependent on the presence of the metabolite during the uptake assay, since it occurred even when 3-OHGA was withdrawn from the medium after cultured cells had been exposed to the acid for approximately 1 h. All other parameters investigated were not influenced by this organic acid, indicating a selective action of 3-OHGA on astrocyte transporters. Although the exact mechanisms involved in 3-OHGA-stimulatory effect on astrocyte glutamate uptake are unknown, the present findings contribute to the understanding of the pathophysiology of GA-I, suggesting that astrocytes may protect neurons against excitotoxic damage caused by 3-OHGA by increasing glutamate uptake and therefore reducing the concentration of this excitatory neurotransmitter in the synaptic cleft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号