首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Incubation of membranes derived from sarcotubular system of rabbit skeletal muscle with increasing concentrations of Triton X-100 produced both stimulation of the AChE activity and solubilization of this enzyme. Mild proteolytic treatment of microsomal membranes produced a several fold activation of the still membrane-bound acetylcholinesterase (AChE) activity. Attempts were made to solubilize AChE from microsomal membranes by proteolytic treatment. About 30–40% of the total enzyme activity could be solubilized by means of trypsin or papain. Short trypsin treatment of the microsomal membranes produced first an activation of the membrane-bound enzyme followed by solubilization. Incubation of muscle microsomes for a short time with papain yielded a significant portion of soluble enzyme. Membrane-bound enzyme activation was measured after a prolonged incubation period. These results are compared with those of solubilization obtained by treatment of membranes with progressive concentrations of Triton X-100. The occurrence of molecular forms in protease-solubilized AChE was investigated by means of centrifugation analysis and slab gel electrophoresis. Centrifugation on sucrose gradients revealed two main components of 4.4S and 10–11S in either trypsin or papain-solubilized AChE. These components behaved as hydrophilic species whereas the Triton solubilized AChE showed an amphipatic character. Application of slab gel electrophoresis showed the occurrence of forms with molecular weights of 350,000; 175,000; 165,000; 85,000 and 76,000. The stimulation of membrane-bound AChE by detergents or proteases would indicate that most of the enzyme molecules or their active sites are sequestered into the lipid bilayer through lipid-protein or protein-protein interactions and these are broken by proteolytic digestion of the muscle microsomes.  相似文献   

2.
A method for preparing various forms of acetylcholinesterase (A ChE) from chicken brain has been developed and they have been characterized in terms of kinetic parameters such as Km, rate constant (k), turnover number (kp), specificity constant (ksp), Vmax and half-life (t1/2). The solubility experiments show that, there are two major forms of A ChE i.e. water-soluble and membrane-bound A ChE (MBA ChE). The MBA ChE shows several subforms, and on the basis of percentage activity only three MBA ChE forms have been selected for complete characterization by various kinetic parameters. It was found that these three forms of MBA ChE demonstrate significant differences in their kinetic properties.  相似文献   

3.
Molecular forms and histochemical localization of acetylcholinesterase and nonspecific cholinesterase were analysed in muscle regenerates obtained from rat EDL and soleus muscles after ischaemic-toxic degeneration and irreversible inhibition of preexistent enzymes. Regenerating myotubes and myofibres produce the 16S AChE form in the absence of innervation. The 10S AChE form prevails over 4S form with maturation into striated fibres. Although the patterns of AChE molecular forms in normal EDL and soleus muscles differ significantly no such differences were observed in noninnervated regenerates from both muscles. Two types of focal accumulation of AChE appear on the sarcolemma of regenerating muscles: first, in places of former motor endplates and, second, in extrajunctional regions. The 4S form of nonspecific cholinesterase is prevailing in regenerating myotubes whereas its asymmetric forms or focal accumulations could not be identified reliably. The satellite cells which survive after muscle degeneration probably originate from some type of late myoblasts and transmit the information concerning the ability to synthesize the asymmetric AChE forms and to focally accumulate AChE to regenerating muscle cells. Synaptic basal lamina from former motor endplates may locally induce AChE accumulations in regenerating muscles.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

4.
The action of ethanol on the activity of membrane-bound and soluble acetylcholinesterase (AChE) in sarcoplasmic reticulum of skeletal muscle has been studied. Treatment of membranes with 2.5–12.5% v/v ethanol produced a slight stimulation of the AChE activity and inhibition at higher concentration. The enzyme remained associated with the membranes after these treatments. The enzyme solubilized with Triton X-100 was inhibited by ethanol in a time-independent manner. Isolated 16 S (A12), 10.5 S (G4) and 4.5 S (G1) forms of AChE were inhibited by ethanol to a similar extent. Samples were reversibly inhibited by ethanol, up to 12.5% v/v, and irreversibly at higher concentrations. Kinetic studies performed with isolated forms in the presence of 5–12.5% v/v ethanol showed that the solvent behaved as a competitive inhibitor of the asymmetric form but as a mixed inhibitor of the tetrameric and monomeric forms. The results show that the solvent interacts with active and/or regulatory sites of AChE from muscle microsomes.  相似文献   

5.
The Ca2+-ryanodine receptor complex is solubilized in functional form on treating sarcoplasmic reticulum (SR) vesicles from rabbit fast skeletal muscle with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS) (1 mg/mg protein) and 1 M NaCl at pH 7.1 by shaking for 30 min at 5 degrees C. The heavy membrane preparations obtained from pyrophosphate homogenates frequently exhibit junctional feet and appear to be derived primarily from the terminal cisternae of the SR. The characteristics of [3H]ryanodine binding are similar for the soluble receptor and the heavy SR vesicles with respect to dependence on Ca2+, pharmacological specificity for inhibition by six ryanoids and ruthenium red, and lack of sensitivity to voltage-dependent Ca2+-channel blockers, inositol 1,4,5-trisphosphate, or doxorubicin. In contrast, the cation sensitivity is decreased on receptor solubilization. The soluble receptor is modulated by cyclic nucleotides and rapidly denatured at 50 degrees C. Saturation experiments reveal a single class of receptors (Kd = 9.6 nM), whereas kinetic measurements yield a calculated association constant of 5.5 X 10(6) min-1 M-1 and a dissociation constant of 5.7 X 10(-4) min-1, suggesting that the [3H]ryanodine receptor complex ages with time to a state which is recalcitrant to dissociation. Sepharose chromatography shows that the receptor complex consists primarily of two protein fractions, one of apparent Mr 150,000-300,000 and a second, the [3H]ryanodine binding component, of approximately Mr 1.2 X 10(6). Preliminary analysis of the soluble receptor preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals subunits of Mr greater than 200,000 and major bands of calsequestrin and Ca2+-transport ATPase. These findings indicate that [3H]ryanodine binds to the Ca2+-induced open state of the channel involved in the release of contractile Ca2+.  相似文献   

6.
Microsomes were isolated from white rabbit muscle and separated into several fractions by centrifugation in a discontinuous sucrose density gradient. Four membrane fractions were obtained namely surface membrane, light, intermediate and heavy sarcoplasmic reticulum. The origin of these microsomal vesicles was investigated by studying biochemical markers of sarcoplasmic reticulum and surface and T-tubular membranes. The transverse tubule derived membranes were further purified by using a discontinuous sucrose density gradient after loading contaminating light sarcoplasmic reticulum vesicles with calcium phosphate in the presence of ATP. All membrane preparations displayed acetylcholinesterase activity (AChE, EC 3.1.1.7), this being relatively more concentrated in T-tubule membranes than in those derived from sarcoplasmic reticulum. The membrane-bound AChE of unfractioned microsomes notably increased its activity by aging, treatment with detergents and low trypsin concentrations indicating that the enzyme is probably attached to the membrane in an occluded form, the unconstrained enzyme displaying higher activity than the vesicular acetylcholinesterase.Sedimentation analysis of Triton-solubilized AChE from different membrane fractions revealed enzymic multiple forms of 13.5S, 9–10S and 4.5–4.8S, the lightest form being the predominant one in all membrane preparations. Therefore, in both sarcoplasmic reticulum and T-tubule membrane the major component of AChE appears to be a membrane-bound component, probably a G1 form.  相似文献   

7.
RNA polymerase has been solubilized from sugar beet chromatin. With calf thmus or sugar beet DNA as template enzyme activity was linear with respect to protein concentration and required the presence of all four nucleoside triphospahates, added DNA and divalent metal ions. The enzyme exhibited a sharp Mn2+ optimum of 1·25 mM and a Mg2+ optimum at 10mM. The Mn2+/Mg2+ activity ratio (activity at optimum concentrations) was 2·0 with an optimum salt concentration of 50 mM. Based on data including inhibition with α-amanitin (0·025 μg/ml), the majority of the total activity appeared to be RNA polymerase I. Subsequent fractionation by DEAE-Sephadex column chromatography resulted in one peak of activity eluted with 0·18 M (NH4)2SO4.  相似文献   

8.
Soleus and extensor digitorum longus (EDL) mitochondria and sarcotubular system were examined in sedentary and trained (treadmill for 12 wk) male rats that were treated with fluoxymesterone or methandrostanolone (2 mg/kg, 5 days/wk, for 8 wk). Neither physical exercise nor anabolic/androgenic steroid administration resulted in a significant change in muscle wet weight. Treatment with the anabolizing androgens increased succinate dehydrogenase activity in fast-twitch muscle mitochondria; this effect was not enhanced by training and was not observed in soleus mitochondria. On the other hand, the content of the slow-twitch muscle in sarcotubular fraction was increased in sedentary rats by fluoxymesterone or methandrostanolone treatment, whereas no significant changes were found in EDL. The training program affected adenosinetriphosphatase (ATPase) activities in the sarcotubular fraction; Mg2(+)-ATPase was increased in both soleus and EDL, but Ca2(+)-ATPase was decreased only in soleus. However, in sedentary animals only the Mg2(+)-dependent activity of EDL was increased by anabolizing androgen treatment, and this change was not potentiated by additional training. The present data indicate that anabolic/androgenic steroids can affect mitochondrial and sarcotubular enzymes in skeletal muscle. The effects are muscle-type specific.  相似文献   

9.
昆虫乙酰胆碱酯酶基因研究进展   总被引:3,自引:0,他引:3  
对昆虫乙酰胆碱酯酶(acetylcholinesterase, AChE,EC 3.1.1.7)的基因结构和表达等方面的研究进展进行了综述。分析了昆虫乙酰胆碱酯酶基因的结构,包括10个外显子的特征。对已经报道的昆虫AChE基因进行了系统归纳,并基于已知全序列的昆虫AChE基因,进行了昆虫AChE基因的分子进化分析。对昆虫AChE基因的结构特点及其功能,以及昆虫AChE基因的活性位点、AChE的变构与昆虫抗药性的关系进行了探讨。最后对昆虫AChE基因研究中存在的问题和前景进行了分析和展望。  相似文献   

10.
The effect of eight different acetylcholinesterase inhibitors (AChEIs) on the activity of acetylcholinesterase (AChE) molecular forms was investigated. Aqueous-soluble and detergent-soluble AChE molecular forms were separated from rat brain homogenate by sucrose density sedimentation. The bulk of soluble AChE corresponds to globular tetrameric (G4), and monomeric (G1) forms. Heptylphysostigmine (HEP) and diisopropylfluorophosphate were more selective for the G1 than for the G4 form in aqueous-soluble extract. Neostigmine showed slightly more selectivity for the G1 form both in aqueous- and detergent-soluble extracts. Other drugs such as physostigmine, echothiophate, BW284C51, tetrahydroaminoacridine, and metrifonate inhibited both aqueous- and detergent-soluble AChE molecular forms with similar potency. Inhibition of aqueous-soluble AChE by HEP was highly competitive with Triton X-100 in a gradient, indicating that HEP may bind to a detergent-sensitive non-catalytic site of AChE. These results suggest a differential sensitivity among AChE molecular forms to inhibition by drugs through an allosteric mechanism. The application of these properties in developing AChEIs for treatment of Alzheimer disease is considered.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

11.
Melittin, the main basic and hydrophobic peptide of bee venom, has been used for solubilizing membrane components of the human erythrocyte ghost. Up to 1.0 mM, it does not extract any phospholipid. Between 0.1 and 1.0 mM, it solubilizes partially glycophorin A and acetylcholinesterase. When the membrane is first degraded by phospholipase A2, the solubilization of both proteins by melittin is total, and 48% of the phospholipids are removed, mainly as lysoproducts, whereas phospholipase A2, by itself, has no solubilizing properties. In its melittin-solubilized state, acetylcholinesterase is in a dimeric form and displays a slow time-dependent irreversible inactivation. Triton X-100 at 1.0% (v/v) interrupts the inactivation. We suggest that melittin binds to the hydrophobic site of acetylcholinesterase which anchors it in the lipid bilayer.  相似文献   

12.
We have extracted acetylcholinesterase from young chick retinas by homogenization in different solutions combining high salt concentration, ionic and nonionic detergents, and EDTA, looking for an optimum procedure for the solubilization of collagen-tailed, asymmetric structural forms of the enzyme. High salt and EDTA seem to be the only necessary requirements for the solubilization of acetylcholinesterase as the A12 form (20S), and the presence of detergent in the homogenization medium does not significantly improve the yield of tailed enzyme. Extraction in the absence of detergent has the potential advantage of a threefold enrichment of tailed enzyme, because only about one-third of the total retinal acetylcholinesterase activity is solubilized. Divalent cations, especially Ca2+, seem to be involved in the attachment of the tailed enzyme to the retinal membranes, at the tail level. High salt-EDTA-extracted 20S acetylcholinesterase (without detergent) aggregates in the presence of exogenous Ca2+ and becomes "insoluble." However, the aggregated 20S acetylcholinesterase can be completely recovered and brought back into solution by further addition of EDTA. Besides, the aggregation can be prevented by the inclusion of Triton X-100 in the homogenization buffer or by adding the detergent concurrently with Ca2+. It is postulated that the acetylcholinesterase collagenous tail is coated by acidic lipid molecules hydrophobically bound to the tail protein so that Ca2+ ionic bridges would actually link these lipid molecules (and consequently the tail) to the membrane matrix. Removal of the lipid coat (e.g., by Triton X-100) produces tailed acetylcholinesterase molecules that no longer aggregate in the presence of Ca2+ and are fully accessible to collagenase digestion.  相似文献   

13.
Abstract: Density gradient ultracentrifugation shows that two molecular forms of acetylcholinesterase (4S and 10S) can be distinguished in the bowels of both normal subjects and Hirschsprung's disease patients. In this disease, besides the very large elevation of acetylcholinesterase activity, the relative distribution of the heavy and light forms was also changed. In the affected bowel the 10S/4S ratio was 2.5 times higher than the normal value. It is assumed that the accumulation of the 10S form might be a response of the intestine to this pathological state. It is also suggested that the increase in the heavy form is closely connected with the nerve fibre proliferation in the aganglionic megacolon.  相似文献   

14.
Integral membrane-associated arginine-specific mono-ADP-ribosyltransferase was purified from rabbit skeletal muscle microsomes. The ADP-ribosyltransferase was solubilized from the 100,000 x g pellet with 0.3% sodium deoxycholate and purified to greater than or equal to 95% homogeneity by successive DE52, concanavalin A-agarose, 3-aminobenzamide-agarose, and size-exclusion high-performance liquid chromatography (HPLC) steps in the presence of detergents. Two molecular weight forms of the enzyme were isolated and partially characterized. The apparent Mr of the alpha-form of the enzyme purified to greater than or equal to 95% homogeneity was approximately 39,000 +/- 500 as estimated by silver-stained sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Mr of the beta-form purified to greater than or equal to 80% homogeneity was 38,500 +/- 500. The rapid procedure resulted in a 200-fold purification for the alpha-form and a 645-fold purification for the beta-form, relative to the microsomal fraction. Positive identification of the enzyme was confirmed by utilizing a zymographic in situ gel assay and by HPLC assay of polyacrylamide gel slice incubations with an NAD and guanylhydrazone substrate. The specificity of the mono-ADP-ribosyltransferase zymographic assay was characterized by time course incubations, hydroxylamine sensitivity, 3-aminobenzamide inhibition, and histone dependence. The ADP-ribosyltransferase is inactivated by reducing agents.  相似文献   

15.
A myofibril-bound serine protease (MBSP) was partially purified from ostrich (Struthio camelus) skeletal muscle. MBSP was dissociated from the myofibrillar fraction by ethylene glycol treatment at pH 8.5, followed by partial purification via Toyopearl Super Q 650 S and p-aminobenzamidine column chromatographies. Ostrich MBSP revealed a major protein band of approximately 21 kDa on SDS-PAGE, showing proteolytic activity after casein zymography. Optima pH and temperature of ostrich MBSP were 8 and 40 °C, respectively. Substrate specificity analysis revealed that the enzyme cleaved synthetic fluorogenic substrates at the carboxyl side of arginine residues. Kinetic parameters (Km and Vmax values) were calculated from Lineweaver–Burk plots. The kinetic characteristics of ostrich MBSP were compared to values obtained for commercial bovine trypsin in this study, as well as those obtained for MBSP from mouse and various fish species. The results suggest that ostrich MBSP is a tryptic-like serine protease. Ostrich MBSP exhibited low sequence identity to commercial bovine trypsin (44%), MBSP from lizard fish skeletal muscle (33%) and trypsinogen from ostrich pancreas (22%).  相似文献   

16.
The structure of the sarcotubular system in avian muscle   总被引:2,自引:0,他引:2  
  相似文献   

17.
The tetrodotoxin binding component from garfish olfactory nerve membranes has been solubilized using the nonionic detergent Triton X-100. Tetrodotoxin binds to the solubilized component with a dissociation constant KD = 2.5 × 10?9M and under saturating conditions 1.95 × 10?12 moles of tetrodotoxin are bound per milligram of solubilized protein. Upon solubilization the toxin binding component becomes much less stable towards heat, chemical modification and enzymatic degradation. Sucrose gradient velocity sedimentation yields an S value of 9.2 for the extracted binding component and from gel filtration data the binding component appears to be slightly larger than β-D-galactosidase.  相似文献   

18.
19.
Although acetylcholinesterase (AChE) knockout mice survive, they have abnormal neuromuscular function. We analysed further the effects of the mutation on hind limb muscle contractile properties. Tibialis anterior muscle from AChE KO mice is unable to maintain tension during a short period of repetitive nerve stimulation (tetanic fade) and has an increased twitch tension in response to a single nerve electric stimulation. In response to direct muscle stimulation, we found that maximal velocity of shortening of soleus muscle is increased and maximum tetanic force is decreased in AchE KO mice versus control animals. As the contractile properties of the soleus muscle were altered by AChE ablation, our results suggest cellular and molecular changes in AChE ablated muscle containing both fast and slow muscle fibres.  相似文献   

20.
Summary Acetylcholinesterase (AChE, EC 3.1.1.7) and choline acetyltransferase (CAT, EC 2.3.1.6) activities where studied in the early development of the chick embryo. A sharp increase in AChE activity occurred in the gastrulating embryo. The highest AChE activity was associated with hypoblast cells. By sucrose density gradient centrifugation three molecular forms of AChE with sedimentation coefficients 4.7 S, 6.8 S and 10.9 S were determined. During the gastrulation there was no remarkable change in the activity of CAT. A two-fold decrease in the CAT activity occurred at the end of gastrulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号