首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Incubation of membranes derived from sarcotubular system of rabbit skeletal muscle with increasing concentrations of Triton X-100 produced both stimulation of the AChE activity and solubilization of this enzyme. Mild proteolytic treatment of microsomal membranes produced a several fold activation of the still membrane-bound acetylcholinesterase (AChE) activity. Attempts were made to solubilize AChE from microsomal membranes by proteolytic treatment. About 30–40% of the total enzyme activity could be solubilized by means of trypsin or papain. Short trypsin treatment of the microsomal membranes produced first an activation of the membrane-bound enzyme followed by solubilization. Incubation of muscle microsomes for a short time with papain yielded a significant portion of soluble enzyme. Membrane-bound enzyme activation was measured after a prolonged incubation period. These results are compared with those of solubilization obtained by treatment of membranes with progressive concentrations of Triton X-100. The occurrence of molecular forms in protease-solubilized AChE was investigated by means of centrifugation analysis and slab gel electrophoresis. Centrifugation on sucrose gradients revealed two main components of 4.4S and 10–11S in either trypsin or papain-solubilized AChE. These components behaved as hydrophilic species whereas the Triton solubilized AChE showed an amphipatic character. Application of slab gel electrophoresis showed the occurrence of forms with molecular weights of 350,000; 175,000; 165,000; 85,000 and 76,000. The stimulation of membrane-bound AChE by detergents or proteases would indicate that most of the enzyme molecules or their active sites are sequestered into the lipid bilayer through lipid-protein or protein-protein interactions and these are broken by proteolytic digestion of the muscle microsomes.  相似文献   

2.
The action of ethanol on the activity of membrane-bound and soluble acetylcholinesterase (AChE) in sarcoplasmic reticulum of skeletal muscle has been studied. Treatment of membranes with 2.5–12.5% v/v ethanol produced a slight stimulation of the AChE activity and inhibition at higher concentration. The enzyme remained associated with the membranes after these treatments. The enzyme solubilized with Triton X-100 was inhibited by ethanol in a time-independent manner. Isolated 16 S (A12), 10.5 S (G4) and 4.5 S (G1) forms of AChE were inhibited by ethanol to a similar extent. Samples were reversibly inhibited by ethanol, up to 12.5% v/v, and irreversibly at higher concentrations. Kinetic studies performed with isolated forms in the presence of 5–12.5% v/v ethanol showed that the solvent behaved as a competitive inhibitor of the asymmetric form but as a mixed inhibitor of the tetrameric and monomeric forms. The results show that the solvent interacts with active and/or regulatory sites of AChE from muscle microsomes.  相似文献   

3.
The characterization of individual acetylcholinesterase (AChE) molecular form subcellular pools in adult mammalian skeletal muscle is a critical point when considering such questions as the origin, assembly, and neurotrophic regulation of these molecules. By correlating the results of differential extraction, in vitro collagenase digestion, and in situ pharmacologic probes of AChE molecular forms in endplate regions of adult rat anterior gracilis muscle, we have shown that: 1) 4.0S (G1) and 6.0S (G2) AChE are predominantly membrane-bound and intracellular; if an extracellular and/or soluble fraction of these forms exists, it cannot be adequately resolved by our methods; 2) 9–11S (globular) AChE activity is distributed between internal and external pools, as well as membrane-associated and soluble fractions; 3) 16.0S (A12) AChE is not an integral membrane protein and exists both intracellularly (25–30%) and extracellularly (70–75%).  相似文献   

4.
Rat obturator nerve 16S acetylcholinesterase (16S AChE) was separated by sucrose gradient velocity sedimentation and compared to the 16S form of AChE similarly derived from endplate regions of anterior gracilis muscles. The 16S AChE from both tissues could only be extracted in high ionic strength buffer; as it aggregated under low ionic strength conditions. Treatment of nerve and muscle 16S AChE with purified collagenase, in the presence of calcium, caused an identical shift in the enzyme's sedimentation coefficient to 17.5S. Other properties which were also equivalent for 16S AChE from both tissue sources included: an excess substrate inhibition above 2×10–3 M acetylcholine andK m of 1.6×10–4 M, relative sensitivity to the specific inhibitors BW284C51 (I50 of 5×10–8 M) and Iso-OMPA (I50 of 5×10–4 M), and a half maximal thermal inactivation at 62.5°C. These and additional results indicate that the 16S forms of AChE in both tissues are analogous molecules, which have a highly asymmetric conformation probably containing a collagen-like domain. The present findings are also consistent with the view that motor neurons provide at least a fraction of the 16S AChE present at the neuromuscular junction.  相似文献   

5.
d-Fructose-1,6-bisphosphatase (EC 3.1.3.11) activity in crude extracts of the blue-green alga Synechococcus leopoliensis (Anacystis nidulans) has been investigated using high resolving electrophoretic and chromatographic separation techniques. Two catalytically active enzyme forms which exhibited isoelectric points of 4.7–4.8 (designated from A) and 4.5–4.6 (designated form B) were resolved by isoelectric focusing. Both enzyme forms acted specifically on fluctose-1,6-bisphosphate. No interconversion between the A and B forms of fructose bisphosphatase activity was detected after refocusing. The apparent molecular weight of the two enzyme forms was determined by non denaturing polyacrylamide gradient electrophoresis; the values were 67,000–70,000 and 60,000–65,000 for A and B, respectively. Both enzyme forms were separated by preparative scale chromatofocusing. Kinetic measurements performed with the separated and partially purified fructose bisphosphatase forms indicated that both enzyme forms differ in their AMP sensitivity. The two enzymes were completely inactivated by the addition of cysteamine and reactivated by dithiols but the reactivation kinetics were different.Abbreviations DTT dl-Dithiothreithol - MTT 3(4,5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide - PMS phenazine methosulfate - TCA trichloroacetic acid - Tris tris(hydroxymethyl)-aminomethane  相似文献   

6.
Chicken muscle and retina, and rat muscle asymmetric acetylcholinesterase (AChE) species were bound to immobilized heparin at 0.4 M NaCl. Binding efficiency was between 50 and 80% for crude fraction I A-forms (AI; muscle), and nearly 100% for fraction II A-forms (AII; muscle and retina). Antibody-affinity-purified AI-forms (chicken) were, however, quantitatively bound to heparin-agarose gels, whereas diisopropylfluorophosphate-inactivated high-salt extracts partially prevented the binding of both AI and AII AChE forms, thus suggesting the presence in crude AI extracts of heparin-like molecules interfering with the tail-heparin interaction. All bound A-forms were progressively displaced from the heparin-agarose columns by increasing salt concentrations, with maximal release at about 0.6 M. They were also efficiently eluted by heparin solutions (1 mg/ml), other glycosaminoglycans being much less effective. Chicken globular AChE forms (G-forms, both low-salt-soluble and detergent-soluble) also bound to immobilized heparin in the absence of salt. Stepwise elution with increasing NaCl concentrations showed maximal release of G-forms at 0.15 M, all globular forms being totally displaced from the column at 0.4 M NaCl. Heparin (1 mg/ml) had the same eluting capacity as 0.4 M NaCl, whereas other glycosaminoglycans were only marginally effective. We conclude that the molecular forms of AChE in these vertebrate species interact with heparin, at salt concentrations that are characteristic for asymmetric and globular forms. Within the A and G molecular form groups, no differences were found in the behavior of the different fractions or subtypes, provided that the enzyme samples were free of interfering molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Trehalose-6-phosphate synthase, catalyzing the reaction between UDP-glucose and glucose 6-phosphate and forming trehalose 6-phosphate, was isolated and partially purified (30-fold) from the phototrophic, haloalkaliphilic bacteriumEctothiorhodospira halochloris. The activity is stabilized by 20mM MgCl2, 50mM NaCe and 2M glycine betaine. The molecular weight was 63000.The enriched enzyme had a MgCl2 optimum at 3–6mM, a pH optimum at 7.5 (in Tris-HCl buffer) and a temperature optimum at 50°C. The Km-values were 1.5×10–3M for UDP-glucose and 2×10–3M for glucose 6-phosphate. The enzyme showed a salinity dependence with optimal concentrations between 100 and 300mM salt. Higher concentrations of salt resulted in a decrease in activity. In the presence of inhibitory salt concentrations the compatible solute glycine betaine had a protective effect with a maximum between 0.5 and 2.0M.  相似文献   

8.
Microsomes were isolated from white rabbit muscle and separated into several fractions by centrifugation in a discontinuous sucrose density gradient. Four membrane fractions were obtained namely surface membrane, light, intermediate and heavy sarcoplasmic reticulum. The origin of these microsomal vesicles was investigated by studying biochemical markers of sarcoplasmic reticulum and surface and T-tubular membranes. The transverse tubule derived membranes were further purified by using a discontinuous sucrose density gradient after loading contaminating light sarcoplasmic reticulum vesicles with calcium phosphate in the presence of ATP. All membrane preparations displayed acetylcholinesterase activity (AChE, EC 3.1.1.7), this being relatively more concentrated in T-tubule membranes than in those derived from sarcoplasmic reticulum. The membrane-bound AChE of unfractioned microsomes notably increased its activity by aging, treatment with detergents and low trypsin concentrations indicating that the enzyme is probably attached to the membrane in an occluded form, the unconstrained enzyme displaying higher activity than the vesicular acetylcholinesterase.Sedimentation analysis of Triton-solubilized AChE from different membrane fractions revealed enzymic multiple forms of 13.5S, 9–10S and 4.5–4.8S, the lightest form being the predominant one in all membrane preparations. Therefore, in both sarcoplasmic reticulum and T-tubule membrane the major component of AChE appears to be a membrane-bound component, probably a G1 form.  相似文献   

9.
Abstract: The CNS of the tobacco hornworm, Manduca sexta , provides a rich source of true acetylcholinesterase (AChE, acetylcholine hydrolase, EC 3.1.1.7.). Optimal extraction of the enzyme was obtained with a nonionic detergent at high ionic strength (1% Triton X-100, 0.5 M NaCl). Velocity sedimentation of the Triton + salt-extracted enzyme demonstrated a single peak whose sedimentation coefficient was dependent upon the enzyme concentration layered on top of the gradient. When more than 20 units were applied to the gradient, a sedimentation coefficient of 8.6 S (205,000) was obtained, and extrapolation to zero units yielded a 5.7 S (110,500) species. Sedimentation in the absence of detergents (1.0 M NaCl or 10 mM phosphate buffer, pH 7.4) yielded pelleted enzyme and species with mean values of 18.6 S (650,000) and 17.5 S (600,000), respectively. The detergent-extracted enzyme also demonstrated a concentration-dependent size in gel filtration experiments. When less than 300 units were applied to the column, a single species was recovered, with a molecular radius of 40.15 ± 2.08 Å, (108,000) or 43.4 ± 2.38 Å, (117,000) calculated by different methods. If the sample contained 300 to 1300 units, two species were observed, with molecular radii of 40.15 ± 2.08 Å or 43.4 ± 2.38 Å and 78.4 ± 3.94 Å, (319,000) or 80.25 ± 3.01 Å (326,000). Velocity sedimentation and gel filtration of AChE have demonstrated that the enzyme has a minimum molecular weight of approximately 110,000 and also exists as higher-molecular-weight aggregates of this value.  相似文献   

10.

Background

Many studies have been conducted in an extensive effort to identify alterations in blood cholinesterase levels as a consequence of disease, including the analysis of acetylcholinesterase (AChE) in plasma. Conventional assays using selective cholinesterase inhibitors have not been particularly successful as excess amounts of butyrylcholinesterase (BuChE) pose a major problem.

Principal Findings

Here we have estimated the levels of AChE activity in human plasma by first immunoprecipitating BuChE and measuring AChE activity in the immunodepleted plasma. Human plasma AChE activity levels were ∼20 nmol/min/mL, about 160 times lower than BuChE. The majority of AChE species are the light G1+G2 forms and not G4 tetramers. The levels and pattern of the molecular forms are similar to that observed in individuals with silent BuChE. We have also compared plasma AChE with the enzyme pattern obtained from human liver, red blood cells, cerebrospinal fluid (CSF) and brain, by sedimentation analysis, Western blotting and lectin-binding analysis. Finally, a selective increase of AChE activity was detected in plasma from Alzheimer''s disease (AD) patients compared to age and gender-matched controls. This increase correlates with an increase in the G1+G2 forms, the subset of AChE species which are increased in Alzheimer''s brain. Western blot analysis demonstrated that a 78 kDa immunoreactive AChE protein band was also increased in Alzheimer''s plasma, attributed in part to AChE-T subunits common in brain and CSF.

Conclusion

Plasma AChE might have potential as an indicator of disease progress and prognosis in AD and warrants further investigation.  相似文献   

11.
—Approximately 70 per cent of the total AChE of bovine brain tissue was solubilized by repeated homogenization and centrifugation in 0.32 m sucrose containing EDTA. After ammonium sulphate fractionation, application of the enzyme preparation to an agarose affinity gel column effected a 700-fold purification. Subsequent molecular filtration separated three active forms of AChE with molecular weights of 130,000, 270,000 and 390,000 with an average specific activity of 575 mmol of acetylthiocholine hydrolysed/mg of protein/h. The complete procedure represented an approximate 23,000-fold purification of the enzyme from that in the original tissue homogenate. The three forms of AChE exhibited certain differences in properties, including apparent Km values, pH optima and sensitivity to inhibitory agents. Ancillary studies on less purified enzyme preparations by use of polyacrylamide gel electrophoresis and isoelectric focusing techniques also suggested that brain AChE exists in multiple forms.  相似文献   

12.
The highly organized pattern of acetylcholinesterase (AChE) molecules attached to the basal lamina of the neuromuscular junction (NMJ) suggests the existence of specific binding sites for their precise localization. To test this hypothesis we immunoaffinity purified quail globular and collagen-tailed AChE forms and determined their ability to attach to frog NMJs which had been pretreated with high-salt detergent buffers. The NMJs were visualized by labeling acetylcholine receptors (AChRs) with TRITC-α-bungarotoxin and AChE by indirect immunofluorescence; there was excellent correspondence (>97%) between the distribution of frog AChRs and AChE. Binding of the exogenous quail AChE was determined using a speciesspecific monoclonal antibody. When frog neuromuscular junctions were incubated with the globular G4/G2 quail AChE forms, there was no detectable binding above background levels, whereas when similar preparations were incubated with the collagen-tailed A12 AChE form >80% of the frog synaptic sites were also immunolabeled for quail AChE attached. Binding of the A12 quail AChE was blocked by heparin, yet could not be removed with high salt buffer containing detergent once attached. Similar results were obtained using empty myofiber basal lamina sheaths produced by mechanical or freeze-thaw damage. These experiments show that specific binding sites exist for collagen-tailed AChE molecules on the synaptic basal lamina of the vertebrate NMJ and suggest that these binding sites comprise a “molecular parking lot” in which the AChE molecules can be released, retained, and turned over.  相似文献   

13.
A dextran-hydrolysing enzyme from Lipomyces lipofer IGC 4042 was purified from the supernatant of cultures grown on a mineral medium with dextran, by ultrafiltration and gel filtration on Bio Gel A-0.5 m. This preparation gave only one band by disc gel electrophoresis. Glucose was the only product of dextran hydrolysis. Optimum pH and temperature for the activity of the enzyme were pH 4.5–5.0 and 45°C, respectively. The enzyme was most stable over a pH range of 4.5–6.0, and after 2 hours at 50°C maintained over 60% of its original activity. The molecular weight was 29,000 daltons and the isoelectric point was at pH 7. Km (45°C, pH 5) for dextran T-40 was 1.2×10–5 M. Glucose inhibited the enzyme competitively with a Ki (45°C, pH 5) of 0.5 mM.  相似文献   

14.
Abstract: According to their solubilization properties, two classes of acetyl-cholinesterases (AChE) can be detected in the adult rat brain: a "soluble" species (easily solubilized without detergent), and a membrane-bound species (solubilized only in the presence of detergent). The latter was found to be homogeneous by gel filtration (Stokes radius 8.05 ± 0.35 nm) and sucrose gradient centrifugation (9.75 ± 0.2 S) in the presence of Triton X-100. The "soluble" AChE gives three stable species in the presence of the same detergent with Stokes radii and sedimentation constants of 10.9 ± 0.5 nm and 16 ± 2 S; 6.75 ± 0.30 nm and 10.7 ± 0.4 S; 5.37 ± 0.35 nm and 4.37 ± 0.1 S. Co-chromatography and co-sedimentation or the reduction and alkylation of disulfide bridges show that all the soluble species are different from the membrane-bound AChE. The possibility that soluble and membrane-bound AChE are completely different molecules is discussed.  相似文献   

15.
Alzheimer’s disease (AD) is a neurodegenerative disorder whose hallmark is the presence of senile plaques and neurofibrillary tangles. Senile plaques are mainly composed of amyloid β-peptide (Aβ) fibrils and several proteins including acetylcholinesterase (AChE). AChE has been previously shown to stimulate the aggregation of Aβ1–40 into amyloid fibrils. In the present work, the neurotoxicity of different amyloid aggregates formed in the absence or presence of AChE was evaluated in rat pheochromocytoma PC12 cells. Stable AChE-Aβ complexes were found to be more toxic than those formed without the enzyme, for Aβ1–40 and Aβ1–42, but not for amyloid fibrils formed with AβVal18→Ala, a synthetic variant of the Aβ1–40 peptide. Of all the AChE-Aβ complexes tested the one containing the Aβ1–40 peptide was the most toxic. When increasing concentrations of AChE were used to aggregate the Aβ1–40 peptide, the neurotoxicity of the complexes increased as a function of the amount of enzyme bound to each complex. Our results show that AChE-Aβ1–40 aggregates are more toxic than those of AChE-Aβ1–42 and that the neurotoxicity depends on the amount of AChE bound to the complexes, suggesting that AChE may play a key role in the neurodegeneration observed in Alzheimer brain.  相似文献   

16.
Acetylcholinesterase (AChE) is an enzyme broadly distributed in many species, including parasites. It occurs in multiple molecular forms that differ in their quaternary structure and mode of anchoring to the cell surface. This review summarizes biochemical and immunological investigations carried out in our laboratories on AChE of the helmint, Schistosoma mansoni. AChE appears in S. mansoni in two principal molecular forms, both globular, with sedimentation coefficients of approximately 6.5 and 8 S. On the basis of their substrate specificity and sensitivity to inhibitors, both are "true" acetylcholinesterases. Approximately half of the AChE activity of S. mansoni is located on the outer surface of the parasite, attached to the tegumental membrane via a covalently attached glycosylphosphatidylinositol anchor. The remainder is located within the parasite, mainly associated with muscle tissue. Whereas the internal enzyme is most likely involved in termination of neurotransmission at cholinergic synapses, the role of the surface enzyme remains to be established; there are, however, indications that it is involved in signal transduction. The two forms of AChE differ in their heparin-binding properties, only the internal 8 S form of the AChE being retained on a heparin column. The two forms differ also in their immunological specificity, since they are selectively recognized by different monoclonal antibodies. Polyclonal antibodies raised against S. mansoni AChE purified by affinity chromatography are specific for the parasite AChE, reacting with both molecular forms, but do not recognize AChE from other species. They interact with the surface-localized enzyme on the intact organism, and produce almost total complement-dependent killing of the parasite. S. mansoni AChE is thus demonstrated to be a functional protein, involved in multifaceted activities, which can serve as a suitable candidate for diagnostic purposes, vaccine development, and drug design.  相似文献   

17.
J P Sine  C Caye-Vaugien 《Biochimie》1984,66(3):203-214
Two soluble forms of AChE from lymphocyte membrane have been obtained, the Triton solubilized Sd form and the high molar salt solubilized Ss form. They present similar Km (0.10 mM). Hydrodynamic properties of these forms have been studied on saccharose gradients with and without detergent or salt. A similar sedimentation coefficient has been found for these two forms (5.7 S). Lymphocyte plasma membrane AChE is a dimeric form (G2). Without detergent, the Sd form shows multiple secondary forms due to main form polymerization. Increase of NaCl concentration (2M) gives rise to a partial dissociation of these polymers. In the same conditions, the Ss form is not affected. The Ss form centrifugated on cesium chloride gradient has a higher density than the Sd form. These two forms have been treated by HPLC: the Stokes radii are respectively 7.1 nm for the Sd form and 4.5 nm for the Ss form. The molecular weights have been estimated at 175 000 for the Sd form and 105 000 for the Ss form. Pronase enzymatic digestion shows that the Ss form is more rapidly inactivated than the Sd form. Phospholipase C inhibits the Ss form and indicates that this form is a lipid-enzyme complex. The Sd form presents a different behaviour: this form is first activated, and afterwards inhibited by phospholipase C. This behaviour could be due to a more preponderant lipidic environment for the Sd form. The Sd form is probably a detergent-lipid-enzyme complex with an important hydrophobocity. These two forms can be explained by a different association between the enzyme and the phospholipids at the plasma membrane.  相似文献   

18.
The major molecular form of acetylcholinesterase (AChE) from chicken brain is a membrane-bound glycoprotein with an apparent sedimentation coefficient of 11.4 S. Analysis of the purified protein by gel filtration, velocity sedimentation, and sodium dodecyl sulfate-gel electrophoresis shows that the solubilized enzyme is a globular tetramer with an apparent Mr = 420,000. This membrane-bound form of AChE is hydrophobic and readily aggregates in the absence of detergent. These aggregates are concentration-dependent, relatively stable in the presence of high salt concentrations, yet readily dissociate upon addition of detergent to the 11.4 S form, indicating that the interactions are hydrophobic. Polyclonal and monoclonal antibodies raised against chicken brain AChE purified by ion exchange chromatography, affinity chromatography, and preparative gel electrophoresis precipitate AChE enzyme activity. However, these antibodies do not cross-react with the enzyme from chicken muscle which preferentially hydrolyses butyrylcholine. Immunoprecipitation of isotopically labeled enzyme molecules from tissue cultured brain cells and analysis by sodium dodecyl sulfate-gel electrophoresis shows that AChE consists of two polypeptide chains with apparent Mr = 105,000 (alpha) and 100,000 (beta) in a 1:1 ratio. Immunoblotting of brain AChE with either the polyclonal or monoclonal antibodies indicates that the alpha and beta chains share antigenic determinants. Furthermore, both polypeptide chains can be labeled with [3H]diisopropyl fluorophosphate, indicating that they each contain a catalytic site. This is the first indication that globular forms of AChE may consist of multiple polypeptide chains.  相似文献   

19.
Abstract— In sucrose gradient centrifugation, acetylcholinesterase (AChE, EC 3.1.1.7.) from the rat superior cervical ganglion (SCG) has been found to contain four molecular forms, characterized by their sedimentation coefficients (4 S, 6.5 S, 10 S and 16 S). Homogenization of the ganglia in various media showed that the 4 S enzyme was readily solubilized in water whereas solubilization of the 6.5 S and 10 S forms was quantitative only in media containing Triton X-100. In order to solubilize the 16 S form, high concentrations of salt (NaCl 1 M) and detergent had to be present. AChE analysed by non-denaturing polyacrylamide gel electrophoresis separated into five bands. Although both distribution patterns were stable, i.e. each form or band preserved its characteristic sedimentation or electrophoretic migration when reanalysed, there was no 1:1 correlation between the forms isolated by sedimentation and the bands obtained by electrophoresis: one band might contain more than one form of enzyme, and conversely one form gave rise to several bands. It was therefore impossible to derive molecular weights from electrophoretic migration in non-denaturing gels. However, it could be shown that the results obtained by both methods of analysis were consistent. Acetylcholinesterase from other nervous structures was analysed: in pre- and postganglionic nerves, the main forms were 10 S and 6.5 S, with a small proportion of 4 S; the 16 S form was not detected. In other sympathetic ganglia, the distribution of forms was identical to that of the superior cervical ganglion. In rachidian ganglia, no 16 S form could be found. Following the section of the preganglionic nerve, the acetylcholinesterase activity of the superior cervical ganglion decreased by 50% in 3 days, and then rose again to about 80% of its original value after 2 weeks. These effects mainly reflected variations in the major 4 S and 10 S forms. The 16 S form, in contrast to its disappearance from denervated muscles, increased transiently during the first 2 weeks after denervation, reaching about twice its original activity. A concomitant cytochemical study of normal and denervated ganglia showed that after preganglionic denervation, AChE localized in the sympathetic neurones decreased markedly and remained low even during the recovery phase. During this period a cholinesterasic activity appeared in the perineuronal glia. Controls established that the enzyme synthetized in the glia is AChE.  相似文献   

20.
An aminopeptidase was isolated from the mid-gut gland of Patinopecten yessoensis. The enzyme was purified from an acetone-dried preparation by extracting, ammonium sulfate precipitation, Hi-Load Q column chromatography, isoelectric focusing, and POROS HP2 and HQ column chromatography. The molecular weight of the enzyme was estimated to be 61 kDa by SDS-polyacrylamide gel electrophoresis and 59 kDa by gel permeation chromatography. The isoelectric point of the enzyme was 5.2 and the optimum pH was 7.0 toward leucine p-nitroanilide (Leu-pNA). The enzyme was inhibited by o-phenanthroline. The activity of the enzyme treated with o-phenanthroline was completely recovered by adding excess Zn2+. Relative hydrolysis rates of amino acid-pNAs and amino acid-4-methylcoumaryl-7-amides (amino acid-MCAs) indicated that the enzyme preferred substrates having Ala or Met as an amino acid residue. The enzyme had a Km of 32.2 μM and kcat of 29.5 s−1 with Ala-pNA and a Km of 11.1 μM and kcat of 9.49 s−1 with Ala-MCA. The enzyme sequentially liberated amino acids from the amino-termini of Ala–Phe–Tyr–Glu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号