首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most antibodies known to interact with beta-adrenergic receptors do not exhibit subtype selectivity, nor do they provide quantitative immunoprecipitation. A monoclonal antibody, G27.1 raised against a synthetic peptide corresponding to the C-terminus of the beta 2-adrenergic receptor of hamster, is selective for the beta 2 subtype. G27.1 provides nearly quantitative immunoprecipitation of the beta 2-adrenergic receptor from hamster lung that has been photoaffinity-labeled and solubilized with sodium dodecyl sulfate. Immunoprecipitation is completely blocked by nanomolar concentrations of the immunizing peptide. This antibody interacts with beta 2-adrenergic receptors from three rodent species, but not with those from humans. When C6 glioma cells, which contain both beta 1- and beta 2-adrenergic receptors, are photoaffinity-labeled in the absence or presence of subtype-selective antagonists, subtype-selective photoaffinity-labeling results. G27.1 can immunoprecipitate beta 2-, but not beta 1-, adrenergic receptors from these cells. Similar results were obtained following subtype-selective photoaffinity-labeling of membranes from rat cerebellum and cerebral cortex. The beta-adrenergic receptors from C6 glioma cells and rat cerebral cortex exist as a mixture of two molecular weight species. These species differ in glycosylation, as shown by endoglycosidase F digestion of crude and immunoprecipitated receptors.  相似文献   

2.
The combination of immunological advances with membrane receptor research has promoted rapid progress in the molecular characterization of neurotransmitter receptor molecules. We have to date produced monoclonal antibodies to β1-, β2-, and β1-adrenergic, D2-dopaminergic, and muscarinic receptors. In addition we have discovered that some allergic respiratory disease patients possess circulating autoantibodies to β2-adrenergic receptors. These antireceptor antibodies in conjunction with specific receptor affinity reagents have allowed us to isolate, purify, and begin to characterize α- and β-adrenergic, dopaminergic, and muscarinic receptors. For example, immunoprecipitation of turkey erythrocyte β1 receptors with monoclonal antibodies yields a single polypeptide Mr 65–70 K. In contrast, purification of β2-adrenergic receptors using either autoantibodies or monoclonal antibodies yields a receptor species with a subunit of Mr 55–59 K. Autoantibodies to β2 receptors demonstrate a 50–100% homology among β2 receptors from humans to rats, whereas monoclonal antibody FV-104 recognizes a determinant in the ligand binding site of all β1 and β2 receptors tested to date. These data suggest that β1- and β2-adrenergic receptors may have evolved from a common ancestor, perhaps by gene duplication.  相似文献   

3.
Glycoprotein IIb-IIIa is the most prominent Arg-Gly-Asp (RGD)-binding adhesion receptor on platelets. By affinity chromatography on an immobilized RGD peptide, we have investigated the possible existence of other platelet-associated adhesion receptors that bind RGD peptides. When an octyl glucoside extract of surface-radioiodinated platelets was applied to an affinity matrix of KYGRGDS-coupled Sepharose 4B, a 160-kDa-labeled protein (P160) and GPIIb-IIIa bound and were specifically eluted by soluble GRGDSP peptide, but not by the variant GRGESP peptide. Furthermore, a dodecapeptide corresponding to fibrinogen gamma 400-411 eluted only GPIIb-IIIa but not P160 from the RGD affinity matrix. Characterization of P160 by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by the O'Farrell gel electrophoresis system indicated that P160 is a component of platelet GPIc. GoH3, a monoclonal antibody recognizing the alpha subunit of the very late antigen-6, failed to immunoprecipitate P160 from the RGD eluate, indicating that it did not contain the very late antigen-6 alpha subunit. In immunoblots, P160 reacted specifically with a polyclonal anti-peptide antibody recognizing the alpha subunit of the vitronectin receptor (VnR), but not with the monoclonal anti-GPIIb antibody PMI-1, suggesting that P160 is the alpha subunit of platelet VnR. This possibility was further substantiated by the complete identity between the determined amino-terminal sequence of P160 and the known sequence of the VnR alpha subunit. Moreover, direct association of P160 with a beta subunit having an apparent molecular weight similar to that of GPIIIa was demonstrated by immunoprecipitation with LM609, an anti-VnR complex monoclonal antibody. These results indicate that the VnR complex is present on platelets and may play a functional role in platelet adhesive reactions.  相似文献   

4.
Antibodies directed against the second extracellular loop of G protein-coupled receptors were shown to possess functional activities. Using a functional monoclonal antibody against the human beta2-adrenergic receptor, a scFv fragment with high affinity for the target epitope was constructed and produced. The fragment recognized the beta2-adrenergic receptors on A431 cells, blocked cAMP accumulation induced by the beta2-agonist salbutamol, and decreased basal cAMP accumulation in the same cells. Their in vitro activity was tested on neonatal rat cardiomyocytes. The antibody fragments blocked the chronotropic activity induced by the beta2-agonist clenbuterol. They also decreased the in vivo heart beating frequency of mice pretreated with bisoprolol (a beta1-adrenergic receptor antagonist) for 4 min after injection. The immunological approach presented here may serve as a strategy for the synthesis of a new class of allosteric modulators for G protein-coupled receptors.  相似文献   

5.
Molecular structure of the beta-adrenergic receptor   总被引:1,自引:0,他引:1  
The beta-adrenergic receptor from several tissues has been purified to homogeneity or photoaffinity radiolabeled and its subunit molecular weight determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. In this study we have examined the oligomeric structure of nondenatured beta 1- and beta 2-adrenergic receptor proteins, as solubilized with the detergent digitonin. Model systems used were frog and turkey red blood cell as well as rat, rabbit, and bovine lung plasma membrane preparations. To correct for the effects of detergent binding, sedimentation equilibrium analysis in various solvents, as adapted for the air-driven ultracentrifuge, was used. With this approach an estimate of 6 g of digitonin/g of protein binding was determined, corresponding to a ratio of 180 mol of digitonin/mol of protein. Protein molecular weights estimated by this method were 43 500 for the turkey red blood cell beta 1 receptor and 54 000 for the frog red blood cell beta 2 receptor. Molecular weights of 60 000-65 000 were estimated for beta 1 and beta 2 receptors present in mammalian lungs. These values agree with estimates of subunit molecular weight obtained by SDS gel electrophoresis of purified or photoradiolabeled preparations and suggest beta-adrenergic receptors to be digitonin solubilized from the membrane as single polypeptide chains.  相似文献   

6.
The mammalian beta 2-adrenergic receptor: purification and characterization   总被引:8,自引:0,他引:8  
The beta 2-adrenergic receptors from hamster, guinea pig, and rat lungs have been solubilized with digitonin and purified by sequential Sepharose-alprenolol affinity and high-performance steric-exclusion liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of iodinated purified receptor preparations reveal a peptide with an apparent Mr of 64 000 in all three systems that coincides with the peptide labeled by the specific beta-adrenergic photoaffinity probe (p-azido-m-[125I]iodobenzyl)carazolol. A single polypeptide was observed in all three systems, suggesting that lower molecular weight peptides identified previously by affinity labeling or purification in mammalian systems may represent proteolyzed forms of the receptor. Purification of the beta-adrenergic receptor has also been assessed by silver staining, iodinated lectin binding, and measurement of the specific activity (approximately 15 000 pmol of [3H]dihydroalprenolol bound/mg of protein). Overall yields approximate 10% of the initial crude particulate binding, with 1-3 pmol of purified receptor obtained/g of tissue. The purified receptor preparations bind agonist and antagonist ligands with the expected beta 2-adrenergic specificity and stereoselectivity. Peptide mapping and lectin binding studies of the hamster, guinea pig, and rat lung beta 2-adrenergic receptors reveal significant similarities suggestive of evolutionary homology.  相似文献   

7.
We have explored the molecular differences between alpha 1- and beta 2-adrenergic receptors that are co-expressed by a clonally-derived cell line, Madin-Darby canine kidney clone D (MDCK-D). MDCK-D membranes were pre-labeled with selective alpha 1- and beta-adrenergic radioligands and were then solubilized with the non-ionic detergent digitonin. Solubilized alpha 1- and beta 2-adrenergic receptors were retained by immobilized wheat germ agglutinin and were eluted following addition of N-acetyl-D-glucosamine or sialic acid. Both receptors were also retained by immobilized Limax flavus lectin, a sialic acid-binding lectin. Lectins that were specific for N-acetyl-D-glucosamine residues did not bind to these receptors. These results indicate that both alpha 1 and beta 2 receptors are sialylated glycoproteins. The solubilized alpha 1- and beta 2-adrenergic receptors migrated with different elution profiles from an Ultragel AcA 34 column. The apparent molecular sizes of the digitonin-receptor complexes were 68A for the alpha 1 receptor and 55A for the beta 2 receptor. These results show that alpha 1- and beta 2-adrenergic receptors can be present on the same cell as distinct sialic acid-containing glycoproteins.  相似文献   

8.
Photoaffinity labeling techniques using p-azido-m-[125I]iodobenzylcarazolol have recently demonstrated that both the beta 1- and beta 2-adrenergic receptor-binding subunits from mammalian tissues including heart, lung, and erythrocytes reside on peptides of Mr approximately equal to 62,000-64,000. In this study, a two-dimensional gel electrophoresis method for peptide mapping was used to investigate and compare the structure of beta 1 - and beta 2-adrenergic receptor subtypes. When the photoaffinity labeled Mr approximately equal to 62,000 peptides from the beta 2-adrenergic receptors of rat lung and erythrocyte are subjected to simultaneous proteolysis using Staphylococcus aureus V8 proteinase or papain, exactly the same peptide fragments are generated from each subunit. In contrast, when the Mr approximately equal to 62,000 peptide containing the beta 1-adrenergic receptor-binding subunit derived from the rat heart is proteolyzed simultaneously with the Mr approximately equal to 62,000 peptide containing the beta 2-adrenergic receptors from either lung or erythrocyte, the peptide fragments generated are distinctly different. Peptide maps of beta 1-adrenergic receptors from the myocardial tissue of different species (pig versus rat) yield slightly different maps while the maps derived from the beta 2-adrenergic receptors of hamster lung and rat lung or erythrocytes reveal no interspecies differences. These data suggest: 1) alterations in the primary structure of the beta-adrenergic receptor may be responsible for the pharmacological specificities characteristic of beta 1- and beta 2-adrenergic receptor subtypes; and 2) alterations in the primary structure of similar beta-adrenergic receptor subtypes across different species may relate to the magnitude of their phylogenetic differences.  相似文献   

9.
Quantitative bioluminescence resonance energy transfer (BRET) analysis was applied to the study of beta(1)- and beta(2)-adrenergic receptor homo- and heterodimerization. To assess the relative affinity between each of the protomers, BRET saturation experiments were carried out in HEK-293T cells. beta(1)- and beta(2)-adrenergic receptors were found to have similar propensity to engage in homo- and heterotropic interactions suggesting that, at equivalent expression levels of the two receptor subtypes, an equal proportion of homo- and heterodimers would form. Analysis of the data also revealed that, at equimolar expression levels of energy donor and acceptor, more than 80% of the receptor molecules exist as dimers and that this high incidence of receptor dimerization is insensitive to receptor density for expression levels varying between 1.4 and 26.9 pmol of receptor/mg of membrane protein. Taken together, these results indicate that most of the receptors expressed in cells exist as constitutive dimers and that, at least in undifferentiated fibroblasts, the proportion of homo- and heterodimers between the closely related beta(1)- and beta(2)-adrenergic receptors is determined by their relative levels of expression.  相似文献   

10.
Upregulation of beta 1-adrenergic receptors in ovariectomized rat hearts   总被引:1,自引:0,他引:1  
Changes in cardiac myofilament Ca(2+) activation have been demonstrated in ovariectomized rats. The underlying mechanisms responsible for these changes, however, are unknown. Accordingly, we measured both density and binding affinity of cardiac beta(1)-adrenergic receptors in sarcolemmal preparations from 10-week ovariectomized rats, pair-fed ovariectomized rats, and sham-operated control rats. Receptor protein content was also measured by immunoblotting. Deprivation of ovarian sex hormones for 10 weeks induced a significant upregulation of beta(1)-adrenergic receptors without affecting binding affinity. The same magnitude of receptor upregulation was also detected in pair-fed ovariectomized hearts. To determine which hormone is responsible for the observed increase in beta(1)-adrenergic receptor density, various sex hormone supplemental regimens were administered to ovariectomized rats. Subcutaneous injection of estrogen (5 microg/rat), progesterone (1 mg/rat), or estrogen plus progesterone three times a week all effectively prevented the upregulation of the beta(1)-adrenoceptors. Western blot analyses using polyclonal antibody of beta(1)-adrenergic receptors revealed the same pattern of changes in the protein content of the receptors in these various groups of experimental hearts as those obtained from the receptor binding assay. These results suggest a possible direct suppressive effect of ovarian sex hormones on the expression of cardiac beta(1)-adrenergic receptors.  相似文献   

11.
Subtypes of insulin-growth factor I (IGF-I) receptors, including hybrid receptors containing insulin receptor alpha beta dimers associated with IGF-I receptor alpha beta dimers, have been described in a number of systems. The molecular basis of the multiple subtypes and their functional significance is not understood. Ligand-dependent phosphorylation of insulin and IGF-I receptors and immunoprecipitation with antipeptide and monoclonal antibodies have been used to characterize the subpopulations of these receptors in the human KB cell line. IGF-I receptors exhibit beta subunits of 95 and 102 kDa in these cells. IGF-I receptors containing 102-kDa beta subunits are immunoprecipitated by the IGF-I receptor-specific antibody alpha-IR3. Antibody alpha-IR3 does not appear to recognize a hybrid receptor in these cells. However, an antipeptide antibody against the carboxyl-terminal domain of the insulin receptor (AbP5) immunoprecipitates a population of receptors phosphorylated in response to IGF-I (1 nM) which contains both 95- and 102-kDa beta subunits. These receptors must be hybrid complexes because AbP5 does not recognize the 102-kDa beta subunit directly. The inability of antibody alpha-IR3 to recognize these complexes suggests that their IGF-I receptor alpha subunits must differ from typical IGF-I receptor alpha subunits either in primary sequence or conformation. Therefore, KB cells may contain more than one type of IGF-I receptor alpha subunit. Hybrid IGF-I receptors can also be distinguished from homotypic IGF-I receptors by their responsiveness to IGF-II. Stimulation of autophosphorylation in hybrid IGF-I receptors by IGF-I is 3-4-fold greater than that seen in response to IGF-II. In contrast, IGF-I and IGF-II are nearly equipotent in stimulating autophosphorylation in the alpha-IR3-reactive receptor population. This suggests the existence of functionally distinct receptor subtypes which may differ in their ability to mediate the biological effects of IGF-II.  相似文献   

12.
Antibodies against the subunits of the dihydropyridine-sensitive L-type calcium channel of skeletal muscle were tested for their ability to immunoprecipitate the high affinity (Kd = 0.13 nM) 125I-omega-conotoxin GVIA receptor from rabbit brain membranes. Monoclonal antibody VD2(1) against the beta subunit of the dihydropyridine receptor from skeletal muscle specifically immunoprecipitated up to 86% of the 125I-omega-conotoxin receptor solubilized from brain membranes whereas specific antibodies against the alpha 1, alpha 2, and gamma subunits did not precipitate the brain receptor. Purified skeletal muscle dihydropyridine receptor inhibited the immunoprecipitation of the brain omega-conotoxin receptor by monoclonal antibody VD2(1). The dihydropyridine receptor from rabbit brain membranes was also precipitated by monoclonal antibody VD2(1). However, neither the neuronal ryanodine receptor nor the sodium channel was precipitated by monoclonal antibody VD2(1). The omega-conotoxin receptor immunoprecipitated by monoclonal antibody VD2(1) showed high affinity 125I-omega-conotoxin binding, which was inhibited by unlabeled omega-contoxin and by CaCl2 but not by nitrendipine or by diltiazem. An antibody against the beta subunit of the skeletal muscle dihydropyridine receptor stained 58- and 78-kDa proteins on immunoblot of the omega-conotoxin receptor, partially purified through heparin-agarose chromatography and VD2(1)-Sepharose chromatography. These results suggest that the brain omega-conotoxin-sensitive calcium channel contains a component homologous to the beta subunit of the dihydropyridine-sensitive calcium channel of skeletal muscle and brain.  相似文献   

13.
A human cDNA fragment bearing the complete coding region for the beta 2-adrenergic receptor was introduced into the genome of Autographa california nuclear polyhedrosis virus under the control of the polyhedrin promoter. Binding studies using [125I]iodocyanopindolol showed that Sf9 insect cells infected with the recombinant virus expressed approximately 1 x 10(6) beta 2-adrenergic receptors on their cell surface. Photoaffinity labeling of whole cells and membranes revealed a molecular weight of approximately 46,000 for the expressed receptor. The receptor produced in insect cells is glycosylated but the extent and pattern differ from that of the receptor from human tissue. The heterologously expressed receptor was purified by alprenolol affinity chromatography, and was able to activate isolated Gs-protein.  相似文献   

14.
Activation of guanyl nucleotide regulatory proteins (G proteins) by hormones and neurotransmitters appears to require the formation of high affinity agonist-receptor-G protein ternary complexes. In the case of the beta 2-adrenergic receptor, multiple regions of the molecule have been implicated in coupling to the stimulatory G protein Gs. This finding raises the possibility that discrete regions of the receptor mediate ternary complex formation, whereas different loci may be involved in other aspects of G protein activation. To date, however, mutagenesis studies with the beta 2-adrenergic receptor have not clarified this question since mutant receptors with impaired abilities to activate Gs have generally possessed a diminished capacity to form the ternary complex as assessed in binding assays. We have expressed in a mammalian cell line a mutant beta 2-adrenergic receptor comprising a seven-amino acid deletion in the carboxyl-terminal region of its third cytoplasmic loop (D267-273), a region proposed to be critically involved in coupling to Gs. When tested with beta-adrenergic agonists, the maximal adenylyl cyclase response mediated by this mutant receptor was less than one-half of that seen with the wild-type receptor. Nevertheless, D267-273 exhibited high affinity agonist binding identical to that of the wild-type receptor. In addition, agonist-induced sequestration of the receptor, a property not mediated by Gs, was also normal. These findings indicate that the formation of high affinity agonist-receptor-Gs complexes is not sufficient to fully activate Gs. Instead, an additional stimulatory signal appears to be required from the receptor. Our data thereby suggest that the molecular determinants of the beta 2-adrenergic receptor involved in formation of the ternary complex are not identical to those that transmit the agonist-induced stimulatory signal to Gs.  相似文献   

15.
The alpha 1-adrenergic receptor has been solubilized in active form from rat hepatic membranes with the nonionic detergent, digitonin, and purified by affinity and gel filtration chromatography to homogeneity with a specific activity of 14,400 pmol/mg of protein. The affinity chromatographic steps of the purification procedure were achieved by the use of a newly synthesized analog (2-[4(2-succinoyl)piperazin-1-yl]-4-amino-6,7-dimethoxyquinazoline, CP-57,609) of the highly selective alpha 1-adrenergic antagonist, prazosin, immobilized via an amide linkage to agarose. The resulting purified receptor bound [3H]prazosin and a variety of adrenergic agents with the specificity, stereoselectivity, and affinities equivalent to those observed with membrane-bound and solubilized receptor preparations. The purified receptor.digitonin complex had a Stokes radius of 49 A and a sedimentation coefficient (s20w) of 7.1, as determined by AcA-34 gel filtration chromatography and sucrose gradient density centrifugation, respectively. Based on these hydrodynamic parameters, the calculated molecular weight of the receptor.digitonin complex was estimated at 147,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis following the final purification step revealed a single band of protein at 59,000 daltons from which [3H]prazosin binding activity could be recovered after renaturation of the receptor protein. These findings indicate that the protein purified from rat hepatic membranes is the hormone binding component of the alpha 1-adrenergic receptor and that the receptor molecule most likely contains more than one Mr = 59,000 subunit.  相似文献   

16.
Both alpha- and beta-adrenergic receptors have been identified in the human myometrium by radioligand binding. Both adrenergic receptor subclasses have been shown to mediate the contractile response of the uterus upon catecholamine stimulation: alpha-adrenergic receptors cause uterine contraction while beta-adrenergic receptors induce relaxation. We have identified alpha 1- and alpha 2-adrenergic receptors in myometrial membranes using the newly developed radiolabelled specific antagonists [3H]-prazosin and [3H]-rauwolscine. This enabled us to characterize both receptor subclasses individually. Beta adrenergic receptors were identified using the radiolabelled antagonist (-)-[3H]-dihydroalprenolol. Binding of radioligands to the myometrial membrane receptors was rapid, readily reversible, of high affinity and stereoselective. The total number of alpha 1-, alpha 2- and beta-receptors was determined by Scatchard analysis of radioligand saturation binding and the beta/beta 2-receptor ratio was determined by computer analysis of the beta 2-selective antagonist ICI 118 551) (-)-[3H]-dihydroalprenolol competition binding curves. This enabled us to study the regulation of both alpha- and beta-receptor subclasses under various physiological and pharmacological conditions in the human, i.e., during different phases of the menstrual cycle, in postmenopausal women and during depo-progestin (Medroxyprogesterone acetate) therapy. Only the alpha 2- and beta 1-adrenergic receptor concentrations were found to be subjected to gonadal steroid regulation. The number of alpha 2- and beta 1-adrenergic receptors increased concomitantly with circulating plasma oestradiol levels. This effect was counteracted by progesterone. The number of alpha 1- and beta 2-adrenergic receptors was unaffected by the gonadal steroid environment. These results are an example of the heteroregulation of membrane receptors by oestrogens and progesterone and cast new light on the regulatory mechanisms involved in uterine contractility in the human.  相似文献   

17.
Insulin receptors purified from human placental membranes by gel-filtration and insulin-agarose affinity chromatography were found to be composed of eight different high molecular weight complexes as identified by nonreducing sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The subunit stoichiometry of these different high molecular weight forms of the insulin receptor were determined by comparisons of silver-stained gel profiles with the autoradiograms of 125I-insulin specifically cross-linked to the alpha subunit and [gamma-32P]ATP specifically autophosphorylated beta subunit gel profiles. Two-dimensional SDS-polyacrylamide gel electrophoresis in the absence and presence of reductant confirmed the subunit stoichiometries as alpha 2 beta 2, alpha 2 beta beta 1, alpha 2 (beta 1)2, alpha 2 beta, alpha 2 beta 1, alpha 2, alpha beta, and beta, where alpha is the Mr = 130,000 subunit, beta is the Mr = 95,000 subunit, and beta 1 is the Mr = 45,000 subunit. Treatment of the insulin receptor preparations with oxidized glutathione or N-ethylmaleimide prior to SDS-polyacrylamide gel electrophoresis increased the relative amount of the alpha 2 beta 2 complex concomitant with a total disappearance of the alpha 2 beta, alpha 2 beta 1, alpha 2, and free beta forms. The effects of oxidized glutathione were found to be completely reversible upon extensive washing of the treated insulin receptors. In contrast, the effects of N-ethylmaleimide were totally irreversible by washing, consistent with known sulfhydryl alkylating properties of this reagent. The formation of these lower molecular weight insulin receptor subunit complexes was further demonstrated to be due to SDS/heat-dependent intramolecular sulfhydryl-disulfide exchange occurring within the alpha 2 beta 2 complex. These studies demonstrate that the largest disulfide-linked complex (alpha 2 beta 2) is the predominant insulin receptor form purified from the human placenta with the other complexes being generated by proteolysis and by internal subunit dissociation.  相似文献   

18.
The structure of the human beta-adrenergic receptor in purified basal membranes of human placental syncytiotrophoblast was probed using photoaffinity labeling. Basal membranes display a high specific activity of receptors (4-5 pmol/mg protein) and possess both beta 1- and beta 2-adrenergic receptors subtypes. Autoradiography of membranes that were incubated with the beta-adrenergic antagonist [125I]iodoazidobenzylpindolol, photolyzed and then subjected to sodium dodecylsulfate-polyacrylamide gel electrophoresis, identified four radiolabeled peptides, Mr = 65-kDa, 54-kDa, 43-kDa and a novel higher molecular weight 76-kDa form of the receptor. Photoaffinity labeling of each of these four peptides displayed the pharmacological properties expected for true beta-adrenergic receptors. The 76-kDa photoaffinity labeled receptor peptide observed in human placenta basal membranes has not been reported elsewhere. Competition studies with the beta1-selective ligand CGP-20712A demonstrate that the photoaffinity labeled receptor peptides are composed of both beta 1- and beta 2-adrenergic receptor subtypes.  相似文献   

19.
Under reducing conditions (5% beta-mercaptoethanol) the mammalian beta-adrenergic receptor binding site from both beta 1 (porcine heart membranes) and beta 2 receptors (hamster lung and rat erythrocyte membranes) appears to reside on peptides of Mr 62,000-65,000 as determined by photoaffinity labeling with p-azido-m-[125I]iodobenzylcarazolol and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When similar experiments are performed in these same systems under a variety of non-reducing conditions, there are minimal changes in the apparent molecular weight of both the beta 1- and beta 2-adrenergic receptor binding subunits and no specifically labeled higher molecular weight proteins are observed suggesting that there are no disulfide linked subunits in mammalian beta-adrenergic receptors.  相似文献   

20.
Novel methods for the isolation of gamma-aminobutyric acidA (GABAA) receptor alpha subunit iso-oligomers have been developed. Thus, populations of GABAA receptors containing the GABAA receptor alpha 1 subunit, the alpha 2 subunit, and the alpha 3 subunit have been purified from sodium deoxycholate extracts of bovine cerebral cortex with the retention of specific [3H]flunitrazepam-binding activity by anti-alpha 1 324-341, anti-Cys alpha 2 414-424, or anti-Cys alpha 3 454-467 antibody affinity chromatography, respectively. The relative abundance of the different specificity alpha subunits in these preparations was compared with benzodiazepine affinity chromatography-purified GABAA receptors by immunoblotting. In each case, it was found that although the immunoreactivity with the specific alpha subunit antibody that was used for purification was enriched in immunoaffinity-purified receptors, reactivity with the other alpha subunit specificity antibodies, together with anti-gamma 2 1-14 Cys immunoreactivity was found. Immunoprecipitation of GABAA receptors purified by anti-alpha 1 324-341 antibody affinity chromatography by all three anti-alpha subunit antibodies employed, together with the use of anti-alpha 1 324-341 and anti-Cys alpha 2 414-424 antibody affinity columns in series, further substantiated the partial co-purification of the different polypeptides. These results demonstrate the copurification of the gamma 2 subunit with each population of alpha 1, alpha 2, alpha 3 subunit-enriched GABAA receptors. They also show the existence of minor populations of GABAA receptors that contain alpha 1 alpha 2, alpha 1 alpha 3, and alpha 2 alpha 3 subunit pairs within single oligomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号