首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
New techniques and methods are being sought to try to win the battle against mosquitoes. Recent advances in molecular techniques have led to the development of new and innovative methods of mosquito control based around the Sterile Insect Technique (SIT)1-3. A control method known as RIDL (Release of Insects carrying a Dominant Lethal)4, is based around SIT, but uses genetic methods to remove the need for radiation-sterilization5-8. A RIDL strain of Ae. aegypti was successfully tested in the field in Grand Cayman9,10; further field use is planned or in progress in other countries around the world.Mass rearing of insects has been established in several insect species and to levels of billions a week. However, in mosquitoes, rearing has generally been performed on a much smaller scale, with most large scale rearing being performed in the 1970s and 80s. For a RIDL program it is desirable to release as few females as possible as they bite and transmit disease. In a mass rearing program there are several stages to produce the males to be released: egg production, rearing eggs until pupation, and then sorting males from females before release. These males are then used for a RIDL control program, released as either pupae or adults11,12.To suppress a mosquito population using RIDL a large number of high quality male adults need to be reared13,14. The following describes the methods for the mass rearing of OX513A, a RIDL strain of Ae. aegypti 8, for release and covers the techniques required for the production of eggs and mass rearing RIDL males for a control program.  相似文献   

2.
Global warming has shortened mosquitoes’ lifecycle period and increased the disease transmission rates by mosquito vectors. We reviewed only three mosquito‐borne diseases: malaria, dengue fever, and the Japanese encephalitis. Billions of people get infected with those diseases and millions of people die every year. Although we struggle to find the most effective way to control mosquitoes using various methods (including pesticides), mosquito‐borne diseases are still among the most serious problems being faced. This paper, therefore, reviews the strategies for controlling mosquitoes. The use of pesticides to control mosquitoes might have more negative effects on humans and environments than benefits. Although the development of genetically modified (GM) mosquitoes raises new hopes for effective mosquito control, it will take longer to assess the risks to humans and environments. Furthermore, there has been concern about the possible adverse effects from the release of GM mosquitoes into the environment. The various mosquito traps may not be as effective at controlling only female mosquito populations. Therefore, new strategies for the control of mosquitoes are vital. The smart mosquito counter device was developed by Korean Centre for Disease Control (KCDC) in 2013. The mosquito pest control office is able to set up the appropriate mosquito control strategies by using quantitative mosquito information. The smart device will bring mosquito control in line with modern smart generation technology and the device will also soon be able to identify different mosquito species. This new strategy will change the methods of mosquito control and will provide beneficial effects toward sustainable nature and human health.  相似文献   

3.
Determining effective sampling methods for mosquitoes are among the first objectives in elucidating transmission cycles of vector-borne zoonotic disease, as the effectiveness of sampling methods can differ based on species, location, and physiological state. The Spissipes section of the subgenus Melanoconion of Culex represents an understudied group of mosquitoes which transmit Venezuelan equine encephalitis viruses (VEEV) in the Western Hemisphere. The objective of this study was to determine effective collection methods that target both blood-engorged and non-engorged females of the Spissipes section of Culex subgenus Melanoconion to test the hypothesis that favorable trapping methods differ between species and by physiological status within a species. Mosquitoes were collected using two commercially available traps, (CDC-light trap and BG-Sentinel trap), two novel passive traps (a novel mosquito drift fence and pop-up resting shelters), and two novel aspirators, (a small-diameter aspirator and a large-diameter aspirator) in Darién, Panama, and Florida, USA. The total number of female mosquitoes collected for each species was compared using rarefaction curves and diversity metrics. We also compared the utility of each trap for collecting total females and blood-engorged females of four Spissipes section mosquito species in Florida and Darién. In Darién, it was found that both blood-engorged and unfed females of Cx. pedroi were most effectively collected using the mosquito drift fence at 57.6% and 61.7% respectively. In contrast, the most unfed Cx. spissipes were collected using the mosquito drift fence (40.7%) while blood-engorged females were collected effectively by pop-up resting shelters (42.3%). In Florida, the best sampling technique for the collection of blood-engorged Cx. panocossa was the large diameter aspirator at 41.9%, while the best trap for collecting Cx. cedecei was the pop-up resting shelter at 45.9%. For unfed female Spissipes section mosquitoes in Florida, the CDC light trap with CO2 collected 84.5% and 98.3% of Cx. cedecei and Cx. panocossa respectively in Florida. Rarefaction analysis, and both the Shannon and Simpsons diversity indices all demonstrated that the mosquito drift fence was capable of collecting the greatest diversity of mosquito species regardless of location. The finding that the proportions of unfed and blood-engorged mosquitoes collected by traps differed both among and between species has implications for how studies of VEEV vectors will be carried out in future investigations. In Florida a combination of pop-up resting shelters and use of a large-diameter aspirator would be optimal for the collection of both VEEV vectors for host-use studies. Results demonstrate that traps can be constructed from common materials to collect mosquitoes for VEEV vector studies and could be assessed for their utilization in vectors of other systems as well. Unfortunately, no single method was effective for capturing all species and physiological states, highlighting a particular need for assessing trap utility for target species of a study.  相似文献   

4.
Major nuisance species are found among the floodwater mosquitoes and snow‐pool mosquitoes, with the former being the main reason for mosquito control in most areas. Nuisance species vary with the area, and previous reports from northern areas conclude that the nuisance is most often caused by snow‐pool mosquitoes. We investigated the mosquito fauna and abundances of host‐seeking females using CDC traps baited with carbon dioxide, in Övertorneå city near the Arctic Circle in northern Sweden, after earlier complaints about massive mosquito nuisance. The abundance of host‐seeking female mosquitoes was high in 2014, with a maximum of ~15,400 individuals per CDC trap night, of which 89% was the floodwater mosquito Aedes rossicus. Surprisingly, the main nuisance species was a floodwater mosquito, occurring at the northernmost location it has ever been recorded in Sweden. Our report is probably the first documentation of such large numbers of Aedes rossicus in any locality and probably the first documentation of a severe floodwater mosquito nuisance near the Arctic Circle. Given the historical data on river discharge in the area, the nuisance is recurrent. We conclude that in northern localities, as well as in more southern localities, production of floodwater mosquitoes is a natural component of the floodplain fauna of rivers with a fluctuating water flow regime. Also, the floodwater mosquitoes Aedes sticticus and Aedes vexans were found north of their formerly known distribution in Sweden.  相似文献   

5.
Genetic manipulation of mosquito species that serve as vectors for human malaria is a prerequisite to the implementation of gene transfer technologies for the control of vector-borne diseases. Here we report on the development of transgenic sexing lines for the mosquito Anopheles stephensi, the principal vector of human malaria in Asia. Male mosquitoes, expressing enhanced green fluorescent protein (EGFP) under the control of the beta2-tubulin promoter, are identified by their fluorescent gonads in as early as their 3(rd) instar larval stage, and can be efficiently separated from females using both manual methods and automated sorting machines. Importantly, beta2-EGFP males are not impaired in their mating ability and viable fluorescent spermatozoa are also detected in spermathecae of wild-type females mated with transgenic males. The transgenic mosquito lines described here combine most of the features desired and required for a safe application of transgenic methodologies to malaria-control programs.  相似文献   

6.
《农业工程》2023,43(1):11-19
Mosquitoes serve as the major vector transmitting malaria, dengue, yellow fever and several other diseases of human concern. Rising in mosquito-borne diseases and consequent fatalities throughout the world has made the management of mosquitoes of paramount importance. With the use of various insecticidal agents and their indiscriminate application in the fields for vector control; other issues such as multiple insecticide resistance, lethality to non-specific targets and adverse effects on human and environmental health have emerged making the situation more critical. Hence, the focus of researchers has diverted to the use of Insect Growth Regulators (IGRs) that affect the growth and development of the insects without inducing any appreciable toxic effects. The paper comprehensively reviews various IGRs and their potential use against insect pests and mosquito vectors. A special emphasis has been laid on the utilization of diflubenzuron, its larvicidal potency and growth regulatory effects against mosquitoes. The paper also delivers a detailed discussion on various approaches governing with the application of diflubenzuron, a chitin synthesis inhibitor, for its potent effects over a wide range of other insect species, low toxicity to humans, safety to other non-target animals, negligible deleterious environmental impact along with the possible development of resistance in the mosquitoes, thereby providing insights and the direction for the future in terms of the innovative and technological perspective. Keeping in view the role of multifarious mechanisms in the development of resistance; use of various synergistic compounds, such as hydrolase inhibitors - profenofos and S,S,S-tributyl phosphorotrithioate; glutathione S-transferase inhibitor – diethylmaleate; and oxidase inhibitor - piperonyl butoxide (PBO); has been recommended in combination with IGRs to enhance their efficacy, and reduce or reverse the resistance in target mosquitoes. Another compound, verapamil, has been found extremely efficient in imparting synergistic effect to diflubenzuron by inhibiting P-glycoproteins, a transporter of the insecticides causing their efflux from the cell. Recommendations have been made for safe and effective mosquito control measures, adequate policies and increased awareness about the mosquito-borne diseases among the masses. In addition, regular surveillance of mosquitoes is endorsed for the formulation of an efficient mosquito management strategy.  相似文献   

7.
Endosymbiotic Wolbachia bacteria are potent modulators of pathogen infection and transmission in multiple naturally and artificially infected insect species, including important vectors of human pathogens. Anopheles mosquitoes are naturally uninfected with Wolbachia, and stable artificial infections have not yet succeeded in this genus. Recent techniques have enabled establishment of somatic Wolbachia infections in Anopheles. Here, we characterize somatic infections of two diverse Wolbachia strains (wMelPop and wAlbB) in Anopheles gambiae, the major vector of human malaria. After infection, wMelPop disseminates widely in the mosquito, infecting the fat body, head, sensory organs and other tissues but is notably absent from the midgut and ovaries. Wolbachia initially induces the mosquito immune system, coincident with initial clearing of the infection, but then suppresses expression of immune genes, coincident with Wolbachia replication in the mosquito. Both wMelPop and wAlbB significantly inhibit Plasmodium falciparum oocyst levels in the mosquito midgut. Although not virulent in non-bloodfed mosquitoes, wMelPop exhibits a novel phenotype and is extremely virulent for approximately 12-24 hours post-bloodmeal, after which surviving mosquitoes exhibit similar mortality trajectories to control mosquitoes. The data suggest that if stable transinfections act in a similar manner to somatic infections, Wolbachia could potentially be used as part of a strategy to control the Anopheles mosquitoes that transmit malaria.  相似文献   

8.
Improving the survey of mosquito populations is of the utmost importance to further enhance mitigation techniques that protect human populations from mosquito‐borne diseases. While mosquito populations are generally studied using physical traps, stand‐off optical sensors allow to study insect ecosystems with potentially better spatial and temporal resolution. This can be greatly beneficial to eco‐epidemiological models and various mosquito control programs. In this contribution, we demonstrate that the gravidity of female mosquitoes can be identified from changes in their spectral and polarimetric backscatter cross sections. Among other predictive variables, the wing beat frequency and the depolarization ratio of the mosquito body allows for the identification of gravid females with a precision and recall of 86% and 87%, respectively. Since female mosquitoes need a blood meal to become gravid, statistics on gravidity is of prime importance as only females that have been gravid might carry infectious diseases. In addition, it allows to detect possible breeding habitat, predict a potential increase in the mosquito population and provide a better overall understanding of the ecosystem dynamics. As a result, targeted and localized mitigation techniques can be used, reducing the cost and improving the efficiency of mosquito population control.  相似文献   

9.
Despite the benefits of multiple mating to females many mosquitoes appear to be monandrous. Members of the mosquito tribe Sabethini are unique among the mosquitoes for they possess iridescent scales and elaborate ornaments in both sexes. Additionally, this tribe boasts the only reported cases of courtship display within the mosquitoes. Due to these singular traits and behaviors, we predicted that members of this tribe have a different mating system with relatively high female mating rate. We tested this prediction in the ornamented mosquito Sabethes cyaneus. Contrary to our prediction, however, females were monandrous throughout their lifetime and multiple gonotrophic cycles. We discuss the possible implications of monandry on the evolution of sexually homologous ornaments, with particular consideration of mutual mate choice.  相似文献   

10.
Sterile insect technique (SIT)-based pest control programs rely on the mass release of sterile insects to reduce the wild target population. In many cases, it is desirable to release only males. Sterile females may cause damage, e.g., disease transmission by mosquitoes or crop damage via oviposition by the Mediterranean fruit fly (Medfly). Also, sterile females may decrease the effectiveness of released males by distracting them from seeking out wild females. To eliminate females from the release population, a suitable sexual dimorphism is required. For several pest species, genetic sexing strains have been constructed in which such a dimorphism has been induced by genetics. Classical strains were based on the translocation to the Y chromosome of a selectable marker, which is therefore expressed only in males. Recently, several prototype strains have been constructed using sex-specific expression of markers or conditional lethal genes from autosomal insertions of transgenes. Here, we describe a novel genetic sexing strategy based on the use of Y-linked transgenes expressing fluorescent proteins. We demonstrate the feasibility of this strategy in a major pest species, Ceratitis capitata (Wiedemann), and discuss the advantages and disadvantages relative to other genetic sexing methods and potential applicability to other species.  相似文献   

11.
Female remating in target pest species can affect the efficacy of control methods such as the Sterile Insect Technique (SIT) but very little is known about the postcopulatory mating behavior of these pests. In this study, we investigated the remating behavior of female Anastrepha serpentina (Diptera: Tephritidae), an oligophagous pest of Sapotaceae. First, we tested how long the sexual refractory period of females lasted after an initial mating. Second, we tested the effect of male and female sterility, female ovipositing opportunities and male density on female propensity to remate. Lastly, we tested if the amount of sperm stored by females was correlated to the likelihood of females to remate. We found that receptivity of mass-reared A. serpentina females had a bimodal response, with up to 16% of mass-reared A. serpentina females remating five days after the initial copulation, decreasing to 2% at 10 and 15 days and increasing to 13% after 20 days. Compared to fertile males, sterile males were less likely to mate and less likely to inhibit females from remating. Copula duration of sterile males was shorter compared to fertile males. Remating females were less likely to mate with a sterile male as a second mate. Sterile females were less likely to mate or remate compared to fertile females. Opportunity to oviposit and male density had no effect on female remating probability. Sperm numbers were not correlated with female likelihood to remate. Information on the post-copulatory behavior of mass-reared A. serpentina will aid fruit fly managers in improving the quality of sterile males. We discuss our results in terms of the differences this species presents in female remating behavior compared to other tephritids.  相似文献   

12.
Certain strains of the endosymbiont Wolbachia have the potential to lower the vectorial capacity of mosquito populations and assist in controlling a number of mosquito-borne diseases. An important consideration when introducing Wolbachia-carrying mosquitoes into natural populations is the minimisation of any transient increase in disease risk or biting nuisance. This may be achieved by predominantly releasing male mosquitoes. To explore this, we use a sex-structured model of Wolbachia-mosquito interactions. We first show that Wolbachia spread can be initiated with very few infected females provided the infection frequency in males exceeds a threshold. We then consider realistic introduction scenarios involving the release of batches of infected mosquitoes, incorporating seasonal fluctuations in population size. For a range of assumptions about mosquito population dynamics we find that male-biased releases allow the infection to spread after the introduction of low numbers of females, many fewer than with equal sex-ratio releases. We extend the model to estimate the transmission rate of a mosquito-borne pathogen over the course of Wolbachia establishment. For a range of release strategies we demonstrate that male-biased release of Wolbachia-infected mosquitoes can cause substantial transmission reductions without transiently increasing disease risk. The results show the importance of including mosquito population dynamics in studying Wolbachia spread and that male-biased releases can be an effective and safe way of rapidly establishing the symbiont in mosquito populations.  相似文献   

13.
Aedes aegypti and Culex pipiens are container-dwelling mosquito species that are vectors of important diseases to man, such as dengue and lymphatic filariasis, respectively. Predators of these pests are an interesting alternative to be incorporated to biological control measures. We tested the consequences of introducing individuals of Girardia anceps, a native freshwater flatworm species, within artificial water containers where larvae of these mosquitoes thrive. Our goals were to ascertain if mosquito species, density of larvae (high or low), type of water container (tires or ovitraps), and presence or absence of planarians affected mosquito survivorship (measured as number of individuals reaching the pupa stage) in manipulated artificial containers. Furthermore, we monitored ovitraps in the field along several months in order to explore the long-term effect of the presence of planarian on the colonization of these containers by feral mosquitoes under natural conditions. We found that the presence of planarians reduced the number of mosquitoes reaching pupation and that such reduction depends on the initial density of larvae. Reduction of populations of A. aegypti was high along the breeding season of this mosquito, being the effect less evident in C. pipiens. G. anceps could be an agent of control against container-breeding mosquitoes if its release in small water containers is complemented with other suitable management strategies.  相似文献   

14.
Malaria is a mosquito-borne infectious disease caused by Plasmodium parasites transmitted by the infectious bite of Anopheles mosquitoes. Vector control of malaria has predominantly focused on targeting the adult mosquito through insecticides and bed nets. However, current vector control methods are often not sustainable for long periods so alternative methods are needed. A novel biocontrol approach for mosquito-borne diseases has recently been proposed, it uses maternally inherited endosymbiotic Wolbachia bacteria transinfected into mosquitoes in order to interfere with pathogen transmission. Transinfected Wolbachia strains in Aedes aegypti mosquitoes, the primary vector of dengue fever, directly inhibit pathogen replication, including Plasmodium gallinaceum, and also affect mosquito reproduction to allow Wolbachia to spread through mosquito populations. In addition, transient Wolbachia infections in Anopheles gambiae significantly reduce Plasmodium levels. Here we review the prospects of using a Wolbachia-based approach to reduce human malaria transmission through transinfection of Anopheles mosquitoes.  相似文献   

15.
16.
The life cycle of Amblyospora indicola, a parasite of the mosquito Culex sitiens, was revealed by field observations and laboratory infection experiments conducted in Australia. In northern Queensland, infected C. sitiens larvae were often found breeding in association with two cyclopoid copepods: Apocyclops dengizicus and an undescribed species of the same genus. The latter species was found to be an intermediate copepod host of this microsporidium whereas A. dengizicus was not. One complete cycle of the parasite extends over two mosquito generations (by transovarial transmission from females with binucleate spores to their eggs) and by horizontal transmission between mosquitoes and copepods. The latter involves horizontal transmission from mosquitoes to copepods via meiospores produced in larval fat body infections and horizontal transmission from copepods to mosquitoes via uninucleate spores produced within infected copepods. Uninucleate clavate spores were formed in Apocyclops sp. nov. copepods 7-10 days after exposure to larval meiospores and were infectious to larvae of a microsporidian-free colony of C. sitiens. The development of A. indicola within mosquito larvae exposed to infected copepods is similar to that of A. dyxenoides infecting C. annulirostris. It proceeds from stages with a single nucleus to diplokaryotic binucleate cells in oenocytes. These stages persist through pupation to adult emergence after which time a proportion of male mosquitoes and female mosquitoes may develop binucleate spores without the need for a blood meal. A proportion of both male and female larval progeny of infected females with binucleate spores develop patent fat body infections via transovarial transmission and die in the fourth larval instar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Although arbovirus transmission and identifying target vectors may provide a baseline for planning disease control strategies, there are many gaps in knowledge regarding these mosquitoes and viral species in urban, rural, or sylvatic habitats in the Brazilian Amazon. Our goal was to screen for dengue, chikungunya, and Zika viruses in synanthropic mosquitoes and with Flinders Technology Associates (FTA) cards using insect saliva. Mosquitoes were caught using ovitraps and aspirators in the city of Porto Velho, Rondônia, Brazil. Honey-baited FTA cards were placed in mosquito cages for 15 days; whole mosquitoes and FTA cards were analysed for viral RNA using RT-qPCR assays. One pool of Aedes aegypti females was found to be infected with the Zika virus and one male mosquito was infected with dengue-4, suggesting natural vertical/venereal transmission. Our study also reported evidence of vertical/venereal transmission of ZIKV in Culex quinquefasciatus males for the first time in the Brazilian Amazon, and the feasibility of using FTA cards to detect arboviruses in the saliva of field-collected mosquitoes. Vertical/venereal transmission of viruses by atypical mosquito species reinforces the need for combined viral and entomological screening in arbovirus surveillance programs.  相似文献   

18.
The saltwater mosquito, Aedes vigilax, is prolific in coastal wetlands including mangroves and saltmarshes. Ae. vigilax is a vector for arboviruses such as Ross River and Barmah Forest viruses, with significant consequences for human health and economic productivity. In Australia the dominant form of mosquito control is chemicals. For mangroves, this is because there is a critical lack of knowledge supporting alternative approaches, such as environmental modification or biological control using larvivorous fish. This review examines the potential of fish as biological agents for the control of mosquito larvae in mangroves. We consider two key aspects: how larvivorous fish use mangroves; and can larvivorous fish reduce larval mosquito populations sufficiently to provide effective mosquito control? The link between fish and mangroves is reasonably well established, where mangroves act as refuge habitat for small and juvenile fish. Also, research has established that fish can be significant predators of mosquitoes, and therefore may be effective control agents. However, studies of fish activity within mangroves are limited to study of the fringe of the mangroves and not the internal structure of mangrove basins and as a result, fish populations within these areas remain unstudied. Also, until recently there was little appreciation of the mangrove-mosquito habitat relationship and, as a consequence, the importance of the mangrove basin as the key mosquito habitat has also been overlooked in the literature. Similarly, the predator/prey relationships between fish and mosquitoes within mangrove basin environments also remain unstudied, and therefore the importance of fish for mosquito management in mangrove basins is not known. There are substantial knowledge gaps regarding the potential of fish in controlling larval mosquitoes in mangroves. The gaps include: understanding of how larvivorous fish use mangrove basins; the nature of the fish-mosquito predator/prey relationship in mangrove basins; and whether larvivorous fish are effective as a mosquito control option in mangroves.  相似文献   

19.
In repeated behaviours such as those of feeding and reproduction, past experiences can inform future behaviour. By altering their behaviour in response to environmental stimuli, insects in highly variable landscapes can tailor their behaviour to their particular environment. In particular, female mosquitoes may benefit from plasticity in their choice of egg‐laying site as these sites are often temporally variable and clustered. The opportunity to adapt egg‐laying behaviour to past experience also exists for mosquito populations as females typically lay eggs multiple times throughout their lives. Whether experience and age affect egg‐laying (or oviposition) behaviour in the mosquito Stegomyia aegypti (=Aedes aegypti) (Diptera: Culicidae) was assessed using a wind tunnel. Initially, gravid mosquitoes were provided with a cup containing either repellent or well water. After ovipositing in these cups, the mosquitoes were blood‐fed and introduced into a wind tunnel. In this wind tunnel, an oviposition cup containing repellent was placed in the immediate vicinity of the gravid mosquitoes. A cup containing well water was placed at the opposite end of the tunnel so that if the females flew across the chamber, they encountered the well water cup, in which they readily laid eggs. Mosquitoes previously exposed to repellent cups became significantly more likely to later lay eggs in repellent cups, suggesting that previous experience with suboptimal oviposition sites informs mosquitoes of the characteristics of nearby oviposition sites. These results provide further evidence that mosquitoes modify behaviour in response to environmental information and are demonstrated in a vector species in which behavioural plasticity may be ecologically and epidemiologically meaningful.  相似文献   

20.
Traditional mosquito control strategies rely heavily on the use of chemical insecticides. However, concerns about the efficiency of traditional control methods, environmental impact and emerging pesticide resistance have highlighted the necessity for developing innovative tools for mosquito control. Some novel strategies, including release of insects carrying a dominant lethal gene (RIDL®), rely on the sustained release of modified male mosquitoes and therefore benefit from a thorough understanding of the biology of the male of the species. In this report we present the results of a mark-release-recapture study aimed at: (i) establishing the survival in the field of laboratory-reared, wild-type male Aedes aegypti and (b) estimating the size of the local adult Ae. aegypti population. The study took place in Panama, a country where recent increases in the incidence and severity of dengue cases have prompted health authorities to evaluate alternative strategies for vector control. Results suggest a life expectancy of 2.3 days for released male mosquitoes (confidence interval: 1.78-2.86). Overall, the male mosquito population was estimated at 58 males/ha (range 12-81 males/ha), which can be extrapolated to an average of 0.64 pupae/person for the study area. The practical implications of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号