首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Regulated secretory vesicles produce, store, and secrete active peptide hormones and neurotransmitters that function in cell-cell communication. To gain knowledge of the protein systems involved in such secretory vesicle functions, we analyzed proteins in the soluble and membrane fractions of dense core secretory vesicles purified from neuroendocrine chromaffin cells. Soluble and membrane fractions of these vesicles were subjected to SDS-PAGE separation, and proteins from systematically sectioned gel lanes were identified by microcapillary LC-MS/MS (microLC-MS/MS) of tryptic peptides. The identified proteins revealed functional categories of prohormones, proteases, catecholamine neurotransmitter metabolism, protein folding, redox regulation, ATPases, calcium regulation, signaling components, exocytotic mechanisms, and related functions. Several novel secretory vesicle components involved in proteolysis were identified consisting of cathepsin B, cathepsin D, cystatin C, ubiquitin, and TIMP, as well carboxypeptidase E/H and proprotein convertases that are known to participate in prohormone processing. Significantly, the membrane fraction exclusively contained an extensive number of GTP nucleotide-binding proteins related to Rab, Rho, and Ras signaling molecules, together with SNARE-related proteins and annexins that are involved in trafficking and exocytosis of secretory vesicle components. Membranes also preferentially contained ATPases that regulate proton translocation. These results implicate membrane-specific functions for signaling and exocytosis that allow these secretory vesicles to produce, store, and secrete active peptide hormones and neurotransmitters released from adrenal medulla for the control of physiological functions in health and disease. In summary, this proteomic study illustrates secretory vesicle protein systems utilized for the production and secretion of regulatory factors that control neuroendocrine functions.  相似文献   

3.
Yeasts combine the ease of genetic manipulation and fermentation of a microorganism with the capability to secrete and modify foreign proteins according to a general eukaryotic scheme. Their rapid growth, microbiological safety, and high-density fermentation in simplified medium have a high impact particularly in the large-scale industrial production of foreign proteins, where secretory expression is important for simplifying the downstream protein purification process. However, secretory expression of heterologous proteins in yeast is often subject to several bottlenecks that limit yield. Thus, many studies on yeast secretion systems have focused on the engineering of the fermentation process, vector systems, and host strains. Recently, strain engineering by genetic modification has been the most useful and effective method for overcoming the drawbacks in yeast secretion pathways. Such an approach is now being promoted strongly by current post-genomic technology and system biology tools. However, engineering of the yeast secretion system is complicated by the involvement of many cross-reacting factors. Tight interdependence of each of these factors makes genetic modification difficult. This indicates the necessity of developing a novel systematic modification strategy for genetic engineering of the yeast secretion system. This mini-review focuses on recent strategies and their advantages for systematic engineering of yeast strains for effective protein secretion.  相似文献   

4.
Beta-amyloid (Aβ) peptides are secreted from neurons, resulting in extracellular accumulation of Aβ and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aβ undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aβ(1–40) and Aβ(1–42) with peptide neurotransmitters (galanin, enkephalin, and NPY) and catecholamine neurotransmitters (dopamine, norepinephrine, and epinephrine). Regulated secretion from chromaffin cells was stimulated by KCl depolarization and nicotine. Forskolin, stimulating cAMP, also induced co-secretion of Aβ peptides with peptide and catecholamine neurotransmitters. These data suggested the co-localization of Aβ with neurotransmitters in dense core secretory vesicles (DCSV) that store and secrete such chemical messengers. Indeed, Aβ was demonstrated to be present in DCSV with neuropeptide and catecholamine transmitters. Furthermore, the DCSV organelle contains APP and its processing proteases, β- and γ-secretases, that are necessary for production of Aβ. Thus, Aβ can be generated in neurotransmitter-containing DCSV. Human IMR32 neuroblastoma cells also displayed regulated secretion of Aβ(1–40) and Aβ(1–42) with the galanin neurotransmitter. These findings illustrate that Aβ peptides are present in neurotransmitter-containing DCSV, and undergo co-secretion with neuropeptide and catecholamine neurotransmitters that regulate brain functions.  相似文献   

5.
Exocrine and endocrine types of secretion were investigated in various cells by applying the protein A-gold immunocytochemical approach. Several proteins secreted by rat pancreatic and parotid acinar cells, mouse ameloblasts, rat pancreatic B cells and lymph-node plasma cells, and frog hepatocytes were studied using specific antibodies. While light microscope immunohistochemistry has allowed for good topographical identification of positive cells in tissues, the protein A-gold approach used at the electron microscope level has demonstrated the presence of specific antigenic sites in particular cellular compartments. All secretory proteins studied were detected in the rough endoplasmic reticulum, the Golgi apparatus, and the secretory granules of the corresponding secreting cells. In addition, some of the proteins were also found in lysosome-like structures. When good ultrastructural preservation of the cellular organelles was achieved, the labeling was revealed with very high resolution and precise localization. In such cases, we found labeling over transitional elements of the endoplasmic reticulum and in smooth vesicles in the Golgi area. The Golgi apparatus was subdivided into three compartments according to differences in labeling: the cisternae on the cisside, those of the trans-side and the trans-most rigid one. Quantitative evaluations of the intensities of labeling have allowed for 1) demonstration of the high specificity of the different labelings; 2) revelation of the existence of a gradient of increasing intensity that follows precisely the progress of the proteins along their secretory pathway; and 3) identification of intracellular sites where increments of protein antigenicity occur. Furthermore, they have revealed the existence of alterations in protein processing that occurred under experimental and pathological conditions. Double-labeling approaches were performed to demonstrate two different antigenic sites on the same tissue section by applying protein A-gold complexes formed by gold particles of different sizes. Protein A-gold immunocytochemistry has also been combined with cytochemical and radioautographic techniques. This review thus demonstrates that high-resolution quantitative immunocytochemistry can contribute significantly to the investigation of the intracellular processing of secretory proteins. It also illustrates the potential and versatility of the protein A-gold technique, which in combination with other procedures constitutes a powerful method in cell biology.  相似文献   

6.
Many neural and endocrine cells possess two pathways of secretion: a regulated pathway and a constitutive pathway. Peptide hormones are stored in granules which undergo regulated release whereas other surface-bound proteins are externalized constitutively via a distinct set of vesicles. An important issue is whether proper function of these pathways requires continuous protein synthesis. Wieland et al. (Wieland, F.T., Gleason, M.L., Serafini, T.A., and Rothman, J.E. (1987) Cell 50, 289-300) have shown that a tripeptide containing the sequence Asn-Tyr-Thr can be glycosylated in intracellular compartments and secreted efficiently from Chinese hamster ovary and HepG2 cells, presumably via the constitutive secretory pathway. Secretion is not affected by cycloheximide, suggesting that operation of this pathway does not require components supplied by new protein synthesis. In this report we determined the effects of protein synthesis inhibitor on membrane traffic to the regulated secretory pathway in the mouse pituitary AtT-20 cells. We examined transport of glycosaminoglycan chains since previous studies have shown that these chains enter the regulated secretory pathways and are packaged along with the hormone adrenocorticotropin (ACTH). We found that cycloheximide treatment severely impairs the cell's ability to store and secrete glycosaminoglycan chains by the regulated secretory pathway. In marked contrast, constitutive secretion of glycosaminoglycan chains remains unhindered in the absence of protein synthesis. The differential requirements for protein synthesis indicate differences in the mechanisms for sorting and/or transport of molecules through the constitutive and the regulated secretory pathways. We discuss the possible mechanisms by which protein synthesis may influence trafficking of glycosaminoglycan chains to the regulated secretory pathway.  相似文献   

7.
8.
ER stress and the unfolded protein response   总被引:29,自引:0,他引:29  
Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to developmental and neurological diseases, e.g. Alzheimer's disease. Expression of mutant proteins disrupts protein folding in the endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR). The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated, sensed, transmitted across the ER membrane, and how downstream events in this stress response are regulated. We propose a model in which the activity of UPR signaling pathways reflects the biosynthetic activity of the ER. We summarize data that shows that this information is integrated into control of cellular events, which were previously not considered to be under control of ER signaling pathways, e.g. execution of differentiation and starvation programs.  相似文献   

9.
10.
11.
Unconventional secretory proteins represent a subpopulation of extracellular factors that are exported from eukaryotic cells by mechanisms that do not depend on the endoplasmic reticulum and the Golgi complex. Various pathways have been implicated in unconventional secretion including those involving intracellular membrane-bound intermediates and others that are based on direct protein translocation across plasma membranes. Interleukin 1β (IL1β) and fibroblast growth factor 2 (FGF2) are classical examples of unconventional secretory proteins with IL1β believed to be present in intracellular vesicles prior to secretion. By contrast, FGF2 represents an example of a non-vesicular mechanism of unconventional secretion. Here, the author discusses the current knowledge about the molecular machinery being involved in FGF2 secretion. To reveal both differential and common requirements, this review further aims at a comprehensive comparison of this mechanism with other unconventional secretory processes. In particular, a potentially general role of tyrosine phosphorylation as a regulatory signal in unconventional protein secretion will be discussed.  相似文献   

12.
The Zika virus (ZIKV) and dengue virus (DENV) flaviviruses exhibit similar replicative processes but have distinct clinical outcomes. A systematic understanding of virus–host protein–pro-tein interaction networks can reveal cellular pathways critical to viral replication and disease patho-genesis. Here we employed three independent systems biology approaches toward this goal. First, protein array analysis of direct interactions between individual ZIKV/DENV viral proteins and 20,240 human proteins revealed multiple conserved cellular pathways and protein complexes, including proteasome complexes. Second, an RNAi screen of 10,415 druggable genes identified the host proteins required for ZIKV infection and uncovered that proteasome proteins were crucial in this process. Third, high-throughput screening of 6016 bioactive compounds for ZIKV inhibition yielded 134 effective compounds, including six proteasome inhibitors that suppress both ZIKV and DENV replication. Integrative analyses of these orthogonal datasets pinpoint proteasomes as crit-ical host machinery for ZIKV/DENV replication. Our study provides multi-omics datasets for fur-ther studies of flavivirus–host interactions, disease pathogenesis, and new drug targets.  相似文献   

13.
Recent experiments using DNA transfection have shown that secretory proteins in AtT-20 cells are sorted into two biochemically distinct secretory pathways. These two pathways differ in the temporal regulation of exocytosis. Proteins secreted by the regulated pathway are stored in dense-core granules until release is stimulated by secretagogues. In contrast, proteins secreted by the constitutive pathway are exported continuously, without storage. It is not known whether there are mechanisms to segregate regulated and constitutive secretory vesicles spatially. In this study, we examined the site of insertion of constitutive vesicles and compared it with that of regulated secretory granules. Regulated granules accumulate at tips of processes in these cells. To determine whether constitutively externalized membrane proteins are inserted into plasma membrane at the cell body or at process tips, AtT-20 cells were infected with ts-O45, a temperature-sensitive mutant of vesicular stomatitis virus in which transport of the surface glycoprotein G is conditionally blocked in the ER. After switching to the permissive temperature, insertion of G protein was detected at the cell body, not at process tips. Targeting of constitutive and regulated secretory vesicles to distinct areas of the plasma membrane appears to be mediated by microtubules. We found that while disruption of microtubules by colchicine had no effect on constitutive secretion, it completely blocked the accumulation of regulated granules at special release sites. Colchicine also affected the proper packaging of regulated secretory proteins. We conclude that regulated and constitutive secretory vesicles are targeted to different areas of the plasma membrane, most probably by differential interactions with microtubules. These results imply that regulated secretory granules may have unique membrane receptors for selective attachment to microtubules.  相似文献   

14.

Background

Human T-cell leukemia virus type 1 (HTLV-1) and type 2 both target T lymphocytes, yet induce radically different phenotypic outcomes. HTLV-1 is a causative agent of Adult T-cell leukemia (ATL), whereas HTLV-2, highly similar to HTLV-1, causes no known overt disease. HTLV gene products are engaged in a dynamic struggle of activating and antagonistic interactions with host cells. Investigations focused on one or a few genes have identified several human factors interacting with HTLV viral proteins. Most of the available interaction data concern the highly investigated HTLV-1 Tax protein. Identifying shared and distinct host-pathogen protein interaction profiles for these two viruses would enlighten how they exploit distinctive or common strategies to subvert cellular pathways toward disease progression.

Results

We employ a scalable methodology for the systematic mapping and comparison of pathogen-host protein interactions that includes stringent yeast two-hybrid screening and systematic retest, as well as two independent validations through an additional protein interaction detection method and a functional transactivation assay. The final data set contained 166 interactions between 10 viral proteins and 122 human proteins. Among the 166 interactions identified, 87 and 79 involved HTLV-1 and HTLV-2 -encoded proteins, respectively. Targets for HTLV-1 and HTLV-2 proteins implicate a diverse set of cellular processes including the ubiquitin-proteasome system, the apoptosis, different cancer pathways and the Notch signaling pathway.

Conclusions

This study constitutes a first pass, with homogeneous data, at comparative analysis of host targets for HTLV-1 and -2 retroviruses, complements currently existing data for formulation of systems biology models of retroviral induced diseases and presents new insights on biological pathways involved in retroviral infection.  相似文献   

15.
The best-understood mechanisms for generating transport vesicles in the secretory and endocytic pathways involve the localized assembly of cytosolic coat proteins such as clathrin, coat protein complex (COP)I and COPII onto membranes. These coat proteins can deform membranes by themselves, but accessory proteins might help to generate the tight curvature needed to form a vesicle. Enzymes that pump phospholipid from one leaflet of the bilayer to the other (flippases) can deform membranes by creating an imbalance in the phospholipid number between the two leaflets. Recent studies describe a requirement for the yeast Drs2p family of P-type ATPases in both phospholipid translocation and protein transport in the secretory and endocytic pathways. This indicates that flippases work with coat proteins to form vesicles.  相似文献   

16.
Bacterial protein secretion is a highly orchestrated process that is essential for infection and virulence. Despite extensive efforts to predict or experimentally detect proteins that are secreted, the characterization of the bacterial secretome has remained challenging. A central event in protein secretion is the type I signal peptidase (SPase)-mediated cleavage of the N-terminal signal peptide that targets a protein for secretion via the general secretory pathway, and the arylomycins are a class of natural products that inhibit SPase, suggesting that they may be useful chemical biology tools for characterizing the secretome. Here, using an arylomycin derivative, along with two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identify 11 proteins whose secretion from stationary-phase Staphylococcus epidermidis is dependent on SPase activity, 9 of which are predicted to be translated with canonical N-terminal signal peptides. In addition, we find that the presence of extracellular domains of lipoteichoic acid synthase (LtaS) and the β-lactam response sensor BlaR1 in the medium is dependent on SPase activity, suggesting that they are cleaved at noncanonical sites within the protein. In all, the data define the proteins whose stationary-phase secretion depends on SPase and also suggest that the arylomycins should be valuable chemical biology tools for the study of protein secretion in a wide variety of different bacteria.  相似文献   

17.
Exosomes are membrane‐bound vesicles that traffic small molecular cargos. These cargos participate in cell–cell communication and contribute to the pathogenesis of many disease including cancer. How these mechanisms contribute to communication within the pancreatic adenocarcinoma (PDAC) microenvironment and how they contribute to PDAC biology are poorly understood. Performed in this study are comprehensive, quantitative comparisons of the proteomes of three PDAC cell lines to those of the exosomes they produce. Approximately 35% of whole cell proteins sort into exosomes. Analysis of composition of microbiomes (ANCOM) determined a cluster of 98 enriched pancreatic cancer exosome core proteins (ePC‐ECPs). Further, these proteins are predicted by ingenuity pathway analysis (IPA) as actively involved in signaling pathways regulating cell death and survival, cellular movement, and cell‐to‐cell signaling and interaction in particular (top three p‐value significant pathways). Significant enrichment of canonical pathways of acute phase response signaling (inflammatory response signaling pathways) and FXR and RXR activation in biosynthetic pathways are also predicted; 97 ePC‐ECPs are associated with cancer and among them, 34 are specifically associated with PDAC. In conclusion, exosomes from PDAC are enriched with cancer‐associated signaling proteins. Further assessment of these proteins as PDAC biomarkers or therapeutic targets is warranted.  相似文献   

18.
The secretory pathway in mammalian cells has evolved to facilitate the transfer of cargo molecules to internal and cell surface membranes. Use of automated microscopy-based genome-wide RNA interference screens in cultured human cells allowed us to identify 554 proteins influencing secretion. Cloning, fluorescent-tagging and subcellular localization analysis of 179 of these proteins revealed that more than two-thirds localize to either the cytoplasm or membranes of the secretory and endocytic pathways. The depletion of 143 of them resulted in perturbations in the organization of the COPII and/or COPI vesicular coat complexes of the early secretory pathway, or the morphology of the Golgi complex. Network analyses revealed a so far unappreciated link between early secretory pathway function, small GTP-binding protein regulation, actin cytoskeleton organization and EGF-receptor-mediated signalling. This work provides an important resource for an integrative understanding of global cellular organization and regulation of the secretory pathway in mammalian cells.  相似文献   

19.
The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals, and it is also provides a platform for the production of many heterologous proteins of medical or industrial interest. Therefore, many studies have focused on metabolic engineering S. cerevisiae to improve the recombinant protein production, and with the development of systems biology, it is interesting to see how this approach can be applied both to gain further insight into protein production and secretion and to further engineer the cell for improved production of valuable proteins. In this review, the protein post-translational modification such as folding, trafficking, and secretion, steps that are traditionally studied in isolation will here be described in the context of the whole system of protein secretion. Furthermore, examples of engineering secretion pathways, high-throughput screening and systems biology applications of studying protein production and secretion are also given to show how the protein production can be improved by different approaches. The objective of the review is to describe individual biological processes in the context of the larger, complex protein synthesis network.  相似文献   

20.
Exorcising the exocyst complex   总被引:1,自引:0,他引:1  
The exocyst complex is an evolutionarily conserved multisubunit protein complex implicated in tethering secretory vesicles to the plasma membrane. Originally identified two decades ago in budding yeast, investigations using several different eukaryotic systems have since made great progress toward determination of the overall structure and organization of the eight exocyst subunits. Studies point to a critical role for the complex as a spatiotemporal regulator through the numerous protein and lipid interactions of its subunits, although a molecular understanding of exocyst function has been challenging to elucidate. Recent progress demonstrates that the exocyst is also important for additional trafficking steps and cellular processes beyond exocytosis, with links to development and disease. In this review, we discuss current knowledge of exocyst architecture, assembly, regulation and its roles in a variety of cellular trafficking pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号