首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Nuclear factor kappa beta (NF-kappaB) inhibits apoptosis in sensory, hippocampal, and striatal neurons of the central nervous system. Although several apoptotic stimuli have been shown to activate NF-kappaB in oligodendrocytes, the function of NF-kappaB in this cell type remains unknown. In this study, we introduced plasmids expressing either the p50- or p65-subunit of human NF-kappaB into Central Glia-4 (CG-4)--a rat oligodendrocyte precursor cell line-and determined the influence of NF-kappaB function on tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis. Expression of NF-kappaB markedly prevented CG-4 apoptosis, with p50 being more effective than p65. This anti-apoptotic activity was repressed by IkappaB-alpha, an inhibitor of NF-kappaB. These results imply that NF-kappaB acts as a potent inhibitor of TNF-induced apoptosis in oligodendrocytes.  相似文献   

5.
6.
7.
8.
9.
10.
11.
《Molecular cell》2014,53(6):867-879
  1. Download : Download high-res image (233KB)
  2. Download : Download full-size image
  相似文献   

12.
13.
14.
15.
Inflammatory response and cell death in hepatocytes are hallmarks of chronic liver disease, and, therefore, can be effective therapeutic targets. Neurotropin® (NTP) is a drug widely used in Japan and China to treat chronic pain. Although NTP has been demonstrated to suppress chronic pain through the descending pain inhibitory system, the action mechanism of NTP remains elusive. We hypothesize that NTP functions to suppress inflammatory pathways, thereby attenuating disease progression. In the present study, we investigated whether NTP suppresses inflammatory signaling and cell death pathways induced by interleukin-1β (IL-1β) and tumor necrosis factor-α (TNFα) in hepatocytes. NTP suppressed nuclear factor-κB (NF-κB) activation induced by IL-1β and TNFα assessed by using hepatocytes isolated from NF-κB-green fluorescent protein (GFP) reporter mice and an NF-κB-luciferase reporter system. The expression of NF-κB target genes, Il6, Nos2, Cxcl1, ccl5 and Cxcl2 induced by IL-1β and TNFα was suppressed after NTP treatment. We also found that NTP suppressed the JNK phosphorylation induced by IL-1β and TNFα. Because JNK activation contributes to hepatocyte death, we determined that NTP treatment suppressed hepatocyte death induced by IL-1β and TNFα in combination with actinomycin D. Taken together, our data demonstrate that NTP attenuates IL-1β and TNFα-mediated inflammatory cytokine expression and cell death in hepatocytes through the suppression of NF-κB and JNK. The results from the present study suggest that NTP may become a preventive or therapeutic strategy for alcoholic and non-alcoholic fatty liver disease in which NF-κB and JNK are thought to take part.  相似文献   

16.
17.
18.
BST2 (HM1.24; CD317; tetherin) is an interferon-inducible transmembrane protein that restricts the release of several enveloped viruses, including HIV, from infected cells. Before its activity as an antiviral factor was described, BST2 was identified as an inducer of NF-κB activity. Here we show that human BST2 induces NF-κB in a dose-dependent manner. This activity is separable from the restriction of virus release: a YxY sequence in the cytoplasmic domain of BST2 is required for the induction of NF-κB but is dispensable for restriction, whereas the glycosylphosphatidylinositol (GPI) addition site in the protein''s ectodomain is required for restriction but is largely dispensable for the induction of NF-κB. Mutations predicted to disrupt the coiled-coil structure of the BST2 ectodomain impaired both signaling and restriction, but disruption of the tetramerization interface differentially affected signaling. The induction of NF-κB by BST2 was impaired by inhibition of transforming growth factor β (TGF-β)-activated kinase 1 (TAK1) or by calcium chelation, suggesting potential linkage to the mitogen-activated protein kinase and endoplasmic reticulum (ER) stress response pathways. Consistent with a role for TAK1, BST2 coimmunoprecipitated with TAK1 and the TAK1-associated pseudophosphatase TAB1; these interactions required the YxY sequence in BST2. Moreover, signaling by BST2 was blocked by expression of an IκB-mutant that inhibits the canonical pathway of NF-κB activation. The expression of HIV-1 Vpu inhibited the induction of NF-κB by BST2; this inhibition required Vpu''s ability to bind the cellular β-TrCP-E3-ubiquitin ligase complex. The expression of HIV-1 lacking vpu augmented the induction of NF-κB activity by BST2, suggesting that BST2 can act as a virus sensor. This augmentation was also inhibited by Vpu in a β-TrCP-dependent manner. The role of BST2 in the host-pathogen relationship is apparently multifaceted: signaling during the innate immune response, sensing of viral gene expression, and direct restriction of virus release. HIV-1 Vpu counteracts each of these functions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号